Added energy conservation test

This commit is contained in:
Connor Johnstone
2025-10-24 14:04:51 -04:00
parent 9b86e1d146
commit 56458a721e
4 changed files with 117 additions and 33 deletions

View File

@@ -764,4 +764,59 @@ mod tests {
// 7th order interpolation should be very accurate
assert_relative_eq!(y_interp[0], exact, epsilon = 1e-8);
}
#[test]
fn test_vern7_long_term_energy_conservation() {
// Test energy conservation over 1000 periods of harmonic oscillator
// This verifies that Vern7 maintains accuracy over long integrations
type Params = ();
fn derivative(_t: f64, y: Vector2<f64>, _p: &Params) -> Vector2<f64> {
// Harmonic oscillator: y'' + y = 0
// As system: y1' = y2, y2' = -y1
Vector2::new(y[1], -y[0])
}
let y0 = Vector2::new(1.0, 0.0); // Start at maximum displacement, zero velocity
// Period of harmonic oscillator is 2π
let period = 2.0 * std::f64::consts::PI;
let num_periods = 1000.0;
let t_end = num_periods * period;
let ode = ODE::new(&derivative, 0.0, t_end, y0, ());
let vern7 = Vern7::new().a_tol(1e-10).r_tol(1e-10);
let controller = PIController::default();
let mut problem = Problem::new(ode, vern7, controller);
let solution = problem.solve();
// Check solution at the end
let y_final = solution.states.last().unwrap();
// Energy of harmonic oscillator: E = 0.5 * (y1^2 + y2^2)
let energy_initial = 0.5 * (y0[0] * y0[0] + y0[1] * y0[1]);
let energy_final = 0.5 * (y_final[0] * y_final[0] + y_final[1] * y_final[1]);
// After 1000 periods, energy drift should be minimal
let energy_drift = (energy_final - energy_initial).abs() / energy_initial;
println!("Initial energy: {}", energy_initial);
println!("Final energy: {}", energy_final);
println!("Energy drift after {} periods: {:.2e}", num_periods, energy_drift);
println!("Number of steps: {}", solution.times.len());
// Energy should be conserved to high precision (< 1e-7 relative error over 1000 periods)
// This is excellent for a non-symplectic method!
assert!(
energy_drift < 1e-7,
"Energy drift too large: {:.2e}",
energy_drift
);
// Also check that we return near the initial position after 1000 periods
// (should be back at (1, 0))
assert_relative_eq!(y_final[0], 1.0, epsilon = 1e-6);
assert_relative_eq!(y_final[1], 0.0, epsilon = 1e-6);
}
}