use criterion::{criterion_group, criterion_main, Criterion}; use ordinary_diffeq::prelude::*; use nalgebra::Vector1; fn bench_simple_1d(c: &mut Criterion) { type Params = (f64,); let params = (0.1,); fn derivative(_t: f64, y: Vector1, p: &Params) -> Vector1 { Vector1::new(-p.0 * y[0]) } let y0 = Vector1::new(1.0); // Set up the problem (ODE, Integrator, Controller, and Callbacks) let ode = ODE::new(&derivative, 0.0, 10.0, y0, params); let dp45 = DormandPrince45::new().a_tol(1e-6).r_tol(1e-6); let controller = PIController::default(); c.bench_function("bench_simple_1d", |b| { b.iter(|| { std::hint::black_box({ Problem::new(ode, dp45, controller).solve(); }); }); }); } fn bench_interpolation_1d(c: &mut Criterion) { type Params = (f64,); let params = (0.1,); fn derivative(_t: f64, y: Vector1, p: &Params) -> Vector1 { Vector1::new(-p.0 * y[0]) } let y0 = Vector1::new(1.0); // Set up the problem (ODE, Integrator, Controller, and Callbacks) let ode = ODE::new(&derivative, 0.0, 10.0, y0, params); let dp45 = DormandPrince45::new().a_tol(1e-6).r_tol(1e-6); let controller = PIController::default(); c.bench_function("bench_interpolation_1d", |b| { b.iter(|| { std::hint::black_box({ let solution = Problem::new(ode, dp45, controller).solve(); let _ = (0..100).map(|t| solution.interpolate(t as f64 * 0.1)[0]); }); }); }); } criterion_group!(benches, bench_simple_1d, bench_interpolation_1d,); criterion_main!(benches);