Finalized. Wish me luck!

This commit is contained in:
Connor
2022-03-23 08:23:37 -06:00
parent 30fc2fbac8
commit 0fb875c777

View File

@@ -35,10 +35,10 @@
\subsection{Motivation} \subsection{Motivation}
\begin{frame} \frametitle{Motivation} % \begin{frame} \frametitle{Motivation}
How can we leverage existing technologies and techniques to determine % How can we leverage existing technologies and techniques to determine
optimally-controlled trajectories to targets in interplanetary space? % optimally-controlled trajectories to targets in interplanetary space?
\end{frame} % \end{frame}
\note{Today I'll be discussing my research in determining optimal trajectories \note{Today I'll be discussing my research in determining optimal trajectories
for interplanetary mission objectives. Numerous scientific and engineering advances have for interplanetary mission objectives. Numerous scientific and engineering advances have
@@ -96,50 +96,17 @@
thrust nature changes the underlying system dynamics that would have been used to optimize a thrust nature changes the underlying system dynamics that would have been used to optimize a
mission such as Voyager, which did not employ low-thrust engines.} mission such as Voyager, which did not employ low-thrust engines.}
% \begin{frame} \frametitle{Current tools} \begin{frame} \frametitle{Problem Statement}
% Indirect Methods: For a given low-thrust engine, spacecraft parameters, and planetary flyby selections,
% \begin{itemize} what is the optimal control thrusting profile, launch conditions, and flyby parameters
% \item CHEBYTOP to arrive at a target outer planet?
% \item NEWSEP \end{frame}
% \item SEPTOP
% \item VARITOP
% \end{itemize}
% Direct Methods:
% \begin{itemize}
% \item EMTG
% \item GALLOP
% \item MALTO
% \item PAGMO
% \end{itemize}
% \end{frame}
% \note{However, many interesting techniques have been developed to combat this issue,
% particularly in recent years. A number of different algorithms have been developed }
% \subsection{Scope}
% \begin{frame} \frametitle{First Frame}
% \begin{itemize}
% \item Item 1
% \item Item 2
% \end{itemize}
% \end{frame}
% \subsection{Problem Statement}
% \begin{frame} \frametitle{First Frame}
% \begin{itemize}
% \item Item 1
% \item Item 2
% \end{itemize}
% \end{frame}
\section{Trajectory Optimization Background} \section{Trajectory Optimization Background}
\subsection{System Dynamics} \subsection{System Dynamics}
\begin{frame} \frametitle{Two Body Problem} \begin{frame} \frametitle{Dynamical Model: Two Body Problem}
\begin{columns} \begin{columns}
\begin{column}{0.45\paperwidth} \begin{column}{0.45\paperwidth}
Assumptions: Assumptions:
@@ -167,7 +134,7 @@
which it is orbiting. Secondly, both of these bodies are modeled as point masses with which it is orbiting. Secondly, both of these bodies are modeled as point masses with
constant mass. This removes the need to account for non-uniform densities and asymmetry.} constant mass. This removes the need to account for non-uniform densities and asymmetry.}
\begin{frame} \frametitle{Two Body Problem} \begin{frame} \frametitle{Dynamical Model: Two Body Problem}
\begin{columns} \begin{columns}
\begin{column}{0.45\paperwidth} \begin{column}{0.45\paperwidth}
\begin{align*} \begin{align*}
@@ -187,7 +154,7 @@
\note{From Newton's second law and the law of universal gravitation, we can then model this \note{From Newton's second law and the law of universal gravitation, we can then model this
force with this equation. Where...} force with this equation. Where...}
\begin{frame} \frametitle{Two Body Problem} \begin{frame} \frametitle{Dynamical Model: Two Body Problem}
\begin{columns} \begin{columns}
\begin{column}{0.45\paperwidth} \begin{column}{0.45\paperwidth}
\begin{equation*} \begin{equation*}
@@ -206,7 +173,7 @@
\note{Dividing by the mass, we can derive the acceleration...} \note{Dividing by the mass, we can derive the acceleration...}
\begin{frame} \frametitle{Two Body Problem} \begin{frame} \frametitle{Dynamical Model: Two Body Problem}
\begin{columns} \begin{columns}
\begin{column}{0.45\paperwidth} \begin{column}{0.45\paperwidth}
\begin{align*} \begin{align*}
@@ -228,7 +195,7 @@
parameter as a function of the planetary mass alone, rather than both combined. With this parameter as a function of the planetary mass alone, rather than both combined. With this
assumption, we can model the system dynamics with this analytically solvable equation} assumption, we can model the system dynamics with this analytically solvable equation}
\begin{frame} \frametitle{Kepler's Laws} \begin{frame} \frametitle{Dynamical Model: Kepler's Laws}
\begin{itemize} \begin{itemize}
\item Each planet's orbit is an ellipse with the Sun at one of the foci. \item Each planet's orbit is an ellipse with the Sun at one of the foci.
\item The area swept out by the imaginary line connecting the primary and secondary \item The area swept out by the imaginary line connecting the primary and secondary
@@ -241,7 +208,7 @@
\note{In the early 1600s, Johannes Kepler determined three laws in order to describe the \note{In the early 1600s, Johannes Kepler determined three laws in order to describe the
motion of a satellite. These are:} motion of a satellite. These are:}
\begin{frame} \frametitle{Kepler's Laws} \begin{frame} \frametitle{Dynamical Model: Kepler's Laws}
\begin{equation*} \begin{equation*}
r = \frac{\sfrac{h^2}{\mu}}{1 + e \cos(\theta)} r = \frac{\sfrac{h^2}{\mu}}{1 + e \cos(\theta)}
\end{equation*} \end{equation*}
@@ -263,7 +230,7 @@
actually take them a step further, producing the following extremely useful equations for actually take them a step further, producing the following extremely useful equations for
representing spacecraft motion:} representing spacecraft motion:}
\begin{frame} \frametitle{Kepler's Equation} \begin{frame} \frametitle{Dynamical Model: Kepler's Equation}
\begin{equation*} \begin{equation*}
\frac{\Delta t}{T} = \frac{E - e \sin E}{2 \pi} \frac{\Delta t}{T} = \frac{E - e \sin E}{2 \pi}
\end{equation*} \end{equation*}
@@ -295,7 +262,7 @@
\subsection{Interplanetary Trajectories} \subsection{Interplanetary Trajectories}
\begin{frame} \frametitle{Patched Conics} \begin{frame} \frametitle{Interplanetary Trajectories: Patched Conics}
\begin{figure}[H] \begin{figure}[H]
\centering \centering
\includegraphics[height=0.7\paperheight]{LaTeX/fig/patched_conics} \includegraphics[height=0.7\paperheight]{LaTeX/fig/patched_conics}
@@ -310,7 +277,7 @@
sub-trajectories, each governed by a distinct single body when the spacecraft is within the sub-trajectories, each governed by a distinct single body when the spacecraft is within the
sphere of influence of that particular body...} sphere of influence of that particular body...}
\begin{frame} \frametitle{Gravity Assist} \begin{frame} \frametitle{Interplanetary Trajectories: Gravity Assist}
\begin{figure}[H] \begin{figure}[H]
\centering \centering
\includegraphics[height=0.7\paperheight]{LaTeX/fig/flyby} \includegraphics[height=0.7\paperheight]{LaTeX/fig/flyby}
@@ -326,7 +293,7 @@
\subsection{Low Thrust Trajectories} \subsection{Low Thrust Trajectories}
\begin{frame} \frametitle{Sims-Flanagan Transcription} \begin{frame} \frametitle{Low Thrust Trajectories: Sims-Flanagan Transcription}
\begin{columns} \begin{columns}
\begin{column}{0.45\paperwidth} \begin{column}{0.45\paperwidth}
\begin{itemize} \begin{itemize}
@@ -351,7 +318,7 @@
trajectories with a single impulsive thrust in the center of each. Effectively, this trajectories with a single impulsive thrust in the center of each. Effectively, this
allows...} allows...}
\begin{frame} \frametitle{Control Vector Description} \begin{frame} \frametitle{Low Thrust Trajectories: Control Vector Description}
\begin{columns} \begin{columns}
\begin{column}{0.45\paperwidth} \begin{column}{0.45\paperwidth}
\begin{align*} \begin{align*}
@@ -607,6 +574,26 @@
\section{Conclusion} \section{Conclusion}
\begin{frame} \frametitle{Conclusion}
\begin{itemize}
\item Validation of direct approach to optimizing interplanetary, low-thrust
trajectories as non-linear programming problems
\item Validation of Monotonic Basin Hopping algorithm for finding global optima in the
same scenario
\item Application in a realistic sample mission revealed two effective trajectory
possibilities
\end{itemize}
\end{frame}
\begin{frame} \frametitle{Future Work}
\begin{itemize}
\item Outer loop which chooses optimal flyby trajectories for increased automation
\item Parallelization would be effective for this problem
\item Better quantification of search space ``coverage'' by the monotonic basin hopping
algorithm
\end{itemize}
\end{frame}
\begin{frame} \begin{frame}
\begin{center} \begin{center}
\begin{Huge} \begin{Huge}