Finalized. Wish me luck!

This commit is contained in:
Connor
2022-03-23 08:23:37 -06:00
parent 30fc2fbac8
commit 0fb875c777

View File

@@ -35,10 +35,10 @@
\subsection{Motivation}
\begin{frame} \frametitle{Motivation}
How can we leverage existing technologies and techniques to determine
optimally-controlled trajectories to targets in interplanetary space?
\end{frame}
% \begin{frame} \frametitle{Motivation}
% How can we leverage existing technologies and techniques to determine
% optimally-controlled trajectories to targets in interplanetary space?
% \end{frame}
\note{Today I'll be discussing my research in determining optimal trajectories
for interplanetary mission objectives. Numerous scientific and engineering advances have
@@ -96,50 +96,17 @@
thrust nature changes the underlying system dynamics that would have been used to optimize a
mission such as Voyager, which did not employ low-thrust engines.}
% \begin{frame} \frametitle{Current tools}
% Indirect Methods:
% \begin{itemize}
% \item CHEBYTOP
% \item NEWSEP
% \item SEPTOP
% \item VARITOP
% \end{itemize}
% Direct Methods:
% \begin{itemize}
% \item EMTG
% \item GALLOP
% \item MALTO
% \item PAGMO
% \end{itemize}
% \end{frame}
% \note{However, many interesting techniques have been developed to combat this issue,
% particularly in recent years. A number of different algorithms have been developed }
% \subsection{Scope}
% \begin{frame} \frametitle{First Frame}
% \begin{itemize}
% \item Item 1
% \item Item 2
% \end{itemize}
% \end{frame}
% \subsection{Problem Statement}
% \begin{frame} \frametitle{First Frame}
% \begin{itemize}
% \item Item 1
% \item Item 2
% \end{itemize}
% \end{frame}
\begin{frame} \frametitle{Problem Statement}
For a given low-thrust engine, spacecraft parameters, and planetary flyby selections,
what is the optimal control thrusting profile, launch conditions, and flyby parameters
to arrive at a target outer planet?
\end{frame}
\section{Trajectory Optimization Background}
\subsection{System Dynamics}
\begin{frame} \frametitle{Two Body Problem}
\begin{frame} \frametitle{Dynamical Model: Two Body Problem}
\begin{columns}
\begin{column}{0.45\paperwidth}
Assumptions:
@@ -167,7 +134,7 @@
which it is orbiting. Secondly, both of these bodies are modeled as point masses with
constant mass. This removes the need to account for non-uniform densities and asymmetry.}
\begin{frame} \frametitle{Two Body Problem}
\begin{frame} \frametitle{Dynamical Model: Two Body Problem}
\begin{columns}
\begin{column}{0.45\paperwidth}
\begin{align*}
@@ -187,7 +154,7 @@
\note{From Newton's second law and the law of universal gravitation, we can then model this
force with this equation. Where...}
\begin{frame} \frametitle{Two Body Problem}
\begin{frame} \frametitle{Dynamical Model: Two Body Problem}
\begin{columns}
\begin{column}{0.45\paperwidth}
\begin{equation*}
@@ -206,7 +173,7 @@
\note{Dividing by the mass, we can derive the acceleration...}
\begin{frame} \frametitle{Two Body Problem}
\begin{frame} \frametitle{Dynamical Model: Two Body Problem}
\begin{columns}
\begin{column}{0.45\paperwidth}
\begin{align*}
@@ -228,7 +195,7 @@
parameter as a function of the planetary mass alone, rather than both combined. With this
assumption, we can model the system dynamics with this analytically solvable equation}
\begin{frame} \frametitle{Kepler's Laws}
\begin{frame} \frametitle{Dynamical Model: Kepler's Laws}
\begin{itemize}
\item Each planet's orbit is an ellipse with the Sun at one of the foci.
\item The area swept out by the imaginary line connecting the primary and secondary
@@ -241,7 +208,7 @@
\note{In the early 1600s, Johannes Kepler determined three laws in order to describe the
motion of a satellite. These are:}
\begin{frame} \frametitle{Kepler's Laws}
\begin{frame} \frametitle{Dynamical Model: Kepler's Laws}
\begin{equation*}
r = \frac{\sfrac{h^2}{\mu}}{1 + e \cos(\theta)}
\end{equation*}
@@ -263,7 +230,7 @@
actually take them a step further, producing the following extremely useful equations for
representing spacecraft motion:}
\begin{frame} \frametitle{Kepler's Equation}
\begin{frame} \frametitle{Dynamical Model: Kepler's Equation}
\begin{equation*}
\frac{\Delta t}{T} = \frac{E - e \sin E}{2 \pi}
\end{equation*}
@@ -295,7 +262,7 @@
\subsection{Interplanetary Trajectories}
\begin{frame} \frametitle{Patched Conics}
\begin{frame} \frametitle{Interplanetary Trajectories: Patched Conics}
\begin{figure}[H]
\centering
\includegraphics[height=0.7\paperheight]{LaTeX/fig/patched_conics}
@@ -310,7 +277,7 @@
sub-trajectories, each governed by a distinct single body when the spacecraft is within the
sphere of influence of that particular body...}
\begin{frame} \frametitle{Gravity Assist}
\begin{frame} \frametitle{Interplanetary Trajectories: Gravity Assist}
\begin{figure}[H]
\centering
\includegraphics[height=0.7\paperheight]{LaTeX/fig/flyby}
@@ -326,7 +293,7 @@
\subsection{Low Thrust Trajectories}
\begin{frame} \frametitle{Sims-Flanagan Transcription}
\begin{frame} \frametitle{Low Thrust Trajectories: Sims-Flanagan Transcription}
\begin{columns}
\begin{column}{0.45\paperwidth}
\begin{itemize}
@@ -351,7 +318,7 @@
trajectories with a single impulsive thrust in the center of each. Effectively, this
allows...}
\begin{frame} \frametitle{Control Vector Description}
\begin{frame} \frametitle{Low Thrust Trajectories: Control Vector Description}
\begin{columns}
\begin{column}{0.45\paperwidth}
\begin{align*}
@@ -607,6 +574,26 @@
\section{Conclusion}
\begin{frame} \frametitle{Conclusion}
\begin{itemize}
\item Validation of direct approach to optimizing interplanetary, low-thrust
trajectories as non-linear programming problems
\item Validation of Monotonic Basin Hopping algorithm for finding global optima in the
same scenario
\item Application in a realistic sample mission revealed two effective trajectory
possibilities
\end{itemize}
\end{frame}
\begin{frame} \frametitle{Future Work}
\begin{itemize}
\item Outer loop which chooses optimal flyby trajectories for increased automation
\item Parallelization would be effective for this problem
\item Better quantification of search space ``coverage'' by the monotonic basin hopping
algorithm
\end{itemize}
\end{frame}
\begin{frame}
\begin{center}
\begin{Huge}