Slow but steady progress on the mbh
This commit is contained in:
@@ -4,111 +4,42 @@
|
||||
|
||||
println("Testing Monotonic Basin Hopper")
|
||||
|
||||
# Initial Setup
|
||||
# sc = Sc("test")
|
||||
# a = rand(50_000:1.:100_000)
|
||||
# e = rand(0.01:0.01:0.5)
|
||||
# i = rand(0.01:0.01:π/6)
|
||||
# T = 2π*√(a^3/μs["Earth"])
|
||||
# prop_time = 0.5T
|
||||
# n = 20
|
||||
# start_mass = 10_000.
|
||||
|
||||
# # A simple orbit raising
|
||||
# start = [oe_to_xyz([ a, e, i, 0., 0., 0. ], μs["Earth"]); start_mass]
|
||||
# Tx, Ty, Tz = conv_T(repeat([0.8], n), repeat([0.], n), repeat([0.], n),
|
||||
# start,
|
||||
# sc,
|
||||
# prop_time,
|
||||
# μs["Earth"])
|
||||
# nominal_path, final = prop(hcat(Tx, Ty, Tz), start, sc, μs["Earth"], prop_time)
|
||||
# new_T = 2π*√(xyz_to_oe(final, μs["Earth"])[1]^3/μs["Earth"])
|
||||
|
||||
# # Find the best solution
|
||||
# best, archive = mbh(start,
|
||||
# final,
|
||||
# sc,
|
||||
# μs["Earth"],
|
||||
# 0.0,
|
||||
# prop_time,
|
||||
# n,
|
||||
# search_patience_lim=25,
|
||||
# drill_patience_lim=50,
|
||||
# verbose=true)
|
||||
|
||||
# # Test and plot
|
||||
# @test best.converged
|
||||
# transit, calc_final = prop(best.zero, start, sc, μs["Earth"], prop_time)
|
||||
# initial_path = prop(zeros((100,3)), start, sc, μs["Earth"], T)[1]
|
||||
# after_transit = prop(zeros((100,3)), calc_final, sc, μs["Earth"], new_T)[1]
|
||||
# final_path = prop(zeros((100,3)), final, sc, μs["Earth"], new_T)[1]
|
||||
# savefig(plot_orbits([initial_path, nominal_path, final_path],
|
||||
# labels=["initial", "nominal transit", "final"],
|
||||
# colors=["#FF4444","#44FF44","#4444FF"]),
|
||||
# "../plots/mbh_nominal.html")
|
||||
# savefig(plot_orbits([initial_path, transit, after_transit, final_path],
|
||||
# labels=["initial", "transit", "after transit", "final"],
|
||||
# colors=["#FFFFFF", "#FF4444","#44FF44","#4444FF"]),
|
||||
# "../plots/mbh_best.html")
|
||||
# i = 0
|
||||
# best_mass = calc_final[end]
|
||||
# nominal_mass = final[end]
|
||||
# masses = []
|
||||
# for candidate in archive
|
||||
# @test candidate.converged
|
||||
# path2, calc_final = prop(candidate.zero, start, sc, μs["Earth"], prop_time)
|
||||
# push!(masses, calc_final[end])
|
||||
# @test norm(calc_final[1:6] - final[1:6]) < 1e-4
|
||||
# end
|
||||
# @test best_mass == maximum(masses)
|
||||
|
||||
# # This won't always work since the test is reduced in fidelity,
|
||||
# # but hopefully will usually work:
|
||||
# @test (start_mass - best_mass) < 1.1 * (start_mass - nominal_mass)
|
||||
|
||||
# Now let's test a sun case. This should be pretty close to begin with
|
||||
start_mass = 10_000.
|
||||
launch_date = DateTime(2016,3,28)
|
||||
launch_j2000 = utc2et(Dates.format(launch_date,"yyyy-mm-ddTHH:MM:SS"))
|
||||
earth_start = [spkssb(ids["Earth"], launch_j2000, "ECLIPJ2000"); start_mass]
|
||||
earth_speed = earth_start[4:6]
|
||||
v∞ = 3.0*earth_speed/norm(earth_speed)
|
||||
start = earth_start + [zeros(3); v∞; 0.0]
|
||||
tof = 3600*24*30*10.75
|
||||
mars_state = [spkssb(Thesis.ids["Mars"], launch_j2000+tof, "ECLIPJ2000"); start_mass]
|
||||
final = mars_state + [ zeros(3); [-1.1, -3., -2.6]; 0.0 ]
|
||||
a = xyz_to_oe(final, μs["Sun"])[1]
|
||||
T = 2π*√(a^3/μs["Sun"])
|
||||
n = 20
|
||||
# First we test the random mission guess generator
|
||||
flybys = [Earth, Venus, Jupiter]
|
||||
launch_window = ( DateTime(2021,12,25), DateTime(2025,12,25) )
|
||||
max_C3 = 10.
|
||||
max_v∞ = 8.
|
||||
latest_arrival = DateTime(2035,12,25)
|
||||
random_guess = Thesis.mission_guess(flybys, bepi, 12_000., launch_window, max_C3, max_v∞, latest_arrival)
|
||||
@test typeof(random_guess) == Mission_Guess
|
||||
|
||||
# But we'll plot to see
|
||||
beginning_path = prop(zeros(100,3), start, Sc("test"), μs["Sun"], tof)[1]
|
||||
ending_path = prop(zeros(100,3), final, Sc("test"), μs["Sun"], T)[1]
|
||||
savefig(plot_orbits([beginning_path, ending_path],
|
||||
labels=["initial", "ending"],
|
||||
colors=["#F2F", "#2F2"]),
|
||||
"../plots/mbh_sun_initial.html")
|
||||
|
||||
# Now we solve and plot the new case
|
||||
best, archive = mbh(start,
|
||||
final,
|
||||
Sc("test"),
|
||||
μs["Sun"],
|
||||
0.0,
|
||||
tof,
|
||||
n,
|
||||
search_patience_lim=25,
|
||||
drill_patience_lim=50,
|
||||
verbose=true)
|
||||
solved_path, solved_state = prop(best.zero, start, Sc("test"), μs["Sun"], tof)
|
||||
ending_path = prop(zeros(100,3), final, Sc("test"), μs["Sun"], T)[1]
|
||||
savefig(plot_orbits([solved_path, ending_path],
|
||||
labels=["best", "ending"],
|
||||
colors=["#C2F", "#2F2"]),
|
||||
"../plots/mbh_sun_solved.html")
|
||||
|
||||
# We'll just make sure that this at least converged correctly
|
||||
@test norm(solved_state[1:6] - final[1:6]) < 1e-4
|
||||
# Then the perturb function
|
||||
mission_guess = Thesis.perturb(test_mission)
|
||||
@test mission_guess.launch_date != test_mission.launch_date
|
||||
@test mission_guess.launch_v∞ != test_mission.launch_v∞
|
||||
for i in 1:2
|
||||
@test mission_guess.phases[i].v∞_in != test_mission.phases[i].v∞_in
|
||||
@test mission_guess.phases[i].δ != test_mission.phases[i].δ
|
||||
@test mission_guess.phases[i].tof != test_mission.phases[i].tof
|
||||
end
|
||||
@test !mission_guess.converged
|
||||
|
||||
# # Then the inner loop builder function
|
||||
mission = Thesis.inner_loop_solve(test_mission_guess)
|
||||
@test !mission.converged
|
||||
|
||||
# For the valid case we need to use a lambert's solver
|
||||
# TODO: This is probably not acceptable for how close I have to be
|
||||
leave = DateTime(1992,11,19)
|
||||
arrive = DateTime(1993,4,1)
|
||||
time_leave = utc2et(Dates.format(leave,"yyyy-mm-ddTHH:MM:SS"))
|
||||
time_arrive = utc2et(Dates.format(arrive,"yyyy-mm-ddTHH:MM:SS"))
|
||||
earth_state = [spkssb(Earth.id, time_leave, "ECLIPJ2000"); 0.0]
|
||||
venus_state = [spkssb(Venus.id, time_arrive, "ECLIPJ2000"); 0.0]
|
||||
v∞_out, v∞_in, tof = Thesis.lamberts(Earth, Venus, leave, arrive)
|
||||
phase = Phase(Venus, 1.0001v∞_in, 0.2, tof, 0.0*ones(20,3))
|
||||
mission_guess = Mission_Guess(bepi, 12_000., leave, v∞_out, [phase])
|
||||
mission = Thesis.inner_loop_solve(mission_guess)
|
||||
@test mission.converged
|
||||
|
||||
end
|
||||
|
||||
Reference in New Issue
Block a user