Slow but steady progress on the mbh

This commit is contained in:
Connor
2021-09-26 00:01:50 -06:00
parent 49eff02cd0
commit 26ddb43a5d
8 changed files with 420 additions and 191 deletions

View File

@@ -1,29 +1,30 @@
using SPICE
try
furnsh("../../spice_files/naif0012.tls")
furnsh("../../spice_files/de430.bsp")
catch
furnsh("spice_files/naif0012.tls")
furnsh("spice_files/de430.bsp")
end
module Thesis module Thesis
using LinearAlgebra using LinearAlgebra
using ForwardDiff using ForwardDiff
using PlotlyJS using PlotlyJS
using Distributed using Distributed
using SPICE
try
furnsh("../../spice_files/naif0012.tls")
furnsh("../../spice_files/de430.bsp")
catch
furnsh("spice_files/naif0012.tls")
furnsh("spice_files/de430.bsp")
end
include("./errors.jl") include("./errors.jl")
include("./constants.jl") include("./constants.jl")
include("./spacecraft.jl") include("./spacecraft.jl")
include("./mission.jl")
include("./conversions.jl") include("./conversions.jl")
include("./lamberts.jl")
include("./plotting.jl") include("./plotting.jl")
include("./inner_loop/laguerre-conway.jl") include("./inner_loop/laguerre-conway.jl")
include("./inner_loop/propagator.jl") include("./inner_loop/propagator.jl")
include("./inner_loop/phase.jl") include("./inner_loop/phase.jl")
# include("./inner_loop/monotonic_basin_hopping.jl") include("./inner_loop/monotonic_basin_hopping.jl")
# include("./outer_loop.jl") # include("./outer_loop.jl")
end end

View File

@@ -1,86 +1,243 @@
using Dates
export mbh export mbh
""" """
Generates n pareto-distributed random numbers Generates pareto-distributed random numbers
This is usually around one to two percent, but sometimes up to ten or so (fat tails)
""" """
function pareto(α::Float64, n::Int) function pareto(shape::Tuple{Int, Int}, α::Float64=1.01)
s = rand((-1,1), (n,3)) s = rand((-1,1), shape)
r = rand(Float64, (n,3)) r = rand(Float64, shape)
ϵ = 1e-10 ϵ = 1e-10
return (s./ϵ) * (α - 1.0) ./ (ϵ ./ (ϵ .+ r)).^(-α) return 1 .+ (s./ϵ) * (α - 1.0) ./ (ϵ ./ (ϵ .+ r)).^(-α)
end
function pareto(shape::Int, α::Float64=1.01)
s = rand((-1,1), shape)
r = rand(Float64, shape)
ϵ = 1e-10
return 1 .+ (s./ϵ) * (α - 1.0) ./ (ϵ ./ (ϵ .+ r)).^(-α)
end
function pareto(α::Float64=1.01)
s = rand((-1,1))
r = rand(Float64)
ϵ = 1e-10
return 1 + (s./ϵ) * (α - 1.0) ./ (ϵ ./ (ϵ .+ r)).^(-α)
end
function pareto_add(α::Float64=1.01)
s = rand((-1,1))
r = rand(Float64)
ϵ = 1e-10
return (s./ϵ) * (α - 1.0) ./ (ϵ ./ (ϵ .+ r)).^(-α)
end end
""" """
Perturbs the monotonic basin hopping decision vector Returns a random date between two dates
TODO: This needs to be updated
""" """
function perturb(x::AbstractMatrix, n::Int) function gen_date(date_range::Tuple{DateTime, DateTime})
ans = x + pareto(1.01, n) l0, lf = date_range
map!(elem -> elem > 1.0 ? 1.0 : elem, ans, ans) l0 + Dates.Millisecond(floor(rand()*(lf-l0).value))
map!(elem -> elem < -1.0 ? -1.0 : elem, ans, ans)
return ans
end end
function new_x(n::Int) """
2.0 * rand(Float64, (n,3)) .- 1. Returns a random amount of time in a range
"""
function gen_period(date_range::Tuple{DateTime, DateTime})
l0, lf = date_range
Dates.Millisecond(floor(rand()*(lf-l0).value))
end end
function mbh(flybys::Vector{Planet}) """
end Perturbs a valid mission with pareto-distributed variables, generating a mission guess
"""
function mbh(start::AbstractVector, function perturb(mission::Mission)
final::AbstractVector, new_launch_date = mission.launch_date + Dates.Second(floor(7day * pareto_add()))
craft::Sc, new_launch_v∞ = mission.launch_v∞ .* pareto(3)
μ::AbstractFloat, new_phases = Vector{Phase}()
t0::AbstractFloat, for phase in mission.phases
tf::AbstractFloat, new_v∞_in = phase.v∞_in .* pareto(3)
n::Int; new_δ = phase.δ * pareto()
search_patience_lim::Int=2000, new_tof = phase.tof * pareto()
drill_patience_lim::Int=40, new_thrust_profile = phase.thrust_profile .* pareto(size(phase.thrust_profile))
tol=1e-6, push!(new_phases, Phase(phase.planet, new_v∞_in, new_δ, new_tof, new_thrust_profile))
verbose=false)
archive = []
i = 0
x_current = Result(false, 1e8*ones(n,3))
while i < search_patience_lim
i += 1
drill_impatience = 0
if verbose print("\r\t", "search: ", i, " drill: ", drill_impatience, " ") end
x_star = nlp_solve(start, final, craft, μ, t0, tf, new_x(n), tol=tol)
# If x_star is converged and better, set new x_current
if x_star.converged && mass_est(x_star.zero) < mass_est(x_current.zero)
x_current = x_star
end
# If x_star is converged, drill down, otherwise, start over
if x_star.converged
while drill_impatience < drill_patience_lim
x_star = nlp_solve(start, final, craft, μ, t0, tf, perturb(x_current.zero,n), tol=tol)
if x_star.converged && mass_est(x_star.zero) < mass_est(x_current.zero)
x_current = x_star
drill_impatience = 0
else
if verbose print("\r\t", "search: ", i, " drill: ", drill_impatience, " ") end
drill_impatience += 1
end
end
push!(archive, x_current)
end
end end
if verbose println() end # TODO: Mission_Guess.validate()
Mission_Guess(mission.sc, mission.start_mass, new_launch_date, new_launch_v∞, new_phases)
end
if archive == [] error("there were no converged paths") end """
Generates a new randomized guess for the mission decision variables
"""
function mission_guess( flybys::Vector{Body},
sc::Sc,
start_mass::Float64,
launch_window::Tuple{DateTime, DateTime},
max_C3_out::Float64,
max_v∞_in_mag::Float64,
latest_arrival::DateTime,
primary::Body=Sun )
# TODO: Eventually I can calculate n more intelligently
n = 20
current_best_mass = 1e8 # Determine the launch conditions
best = archive[1] launch_date = gen_date(launch_window)
for candidate in archive launch_v∞_normalized = rand(-1:0.0001:1, 3)
if mass_est(candidate.zero) < current_best_mass launch_v∞ = rand(0:0.0001:max_C3_out) * launch_v∞_normalized/norm(launch_v∞_normalized)
current_best_mass = mass_est(candidate.zero)
best = candidate # Determine the leg lengths
num_phases = length(flybys) - 1
total_tof = 100year
max_tof = (latest_arrival - launch_date).value / 1000
tofs = rand(30day : hour : 0.7max_tof, num_phases)
total_tof = sum(tofs)
while total_tof > max_tof
tofs = rand(30day : hour : 0.7max_tof, num_phases)
total_tof = sum(tofs)
end
# For each phase, determine the v∞_in and δ
phases = Vector{Phase}()
for i in 1:num_phases
flyby = flybys[i+1]
v∞_normalized = rand(-1:0.0001:1, 3)
v∞ = rand(0:0.0001:10) * v∞_normalized/norm(v∞_normalized)
δ = rand(0:0.0001:2π)
periapsis = (flyby.μ/(v∞ v∞)) * ( 1/sin(δ/2) - 1 )
while periapsis < flyby.r + 100.
δ = rand(0:0.0001:2π)
periapsis = (flyby.μ/(v∞ v∞)) * ( 1/sin(δ/2) - 1 )
end
thrusts = rand(-1:0.0001:1,(n,3))
push!(phases, Phase(flyby, v∞, δ, tofs[i], thrusts))
end
# Finally, determine the arrival v∞
arrival_v∞_normalized = rand(-1:0.0001:1, 3)
arrival_v∞ = rand(0:0.0001:max_v∞_in_mag) * arrival_v∞_normalized/norm(arrival_v∞_normalized)
# And we can construct a mission guess object with these values
Mission_Guess( sc, start_mass, launch_date, launch_v∞, phases )
end
"""
A convenience function for calculating mass usage given a certain thrust profile
"""
function mass_consumption(sc::Sc, phase::Phase)
weighted_thrusting_time = 0.0
n = size(phase.thrust_profile)[1]
for i in 1:size(phase.thrust_profile,1)
weighted_thrusting_time += norm(phase.thrust_profile[i,:]) * phase.tof/n
end
return weighted_thrusting_time*sc.mass_flow_rate
end
"""
This attempts to determine v∞_out from v∞_in and the turning angle, assuming we are staying in the
plane of the three planets
"""
function calc_turn(p1::Body, p2::Body, p3::Body, v∞_in::Vector{Float64}, δ::Float64)
end
"""
Sequentially calls the NLP solver to attempt to solve based on the initial guess
"""
function inner_loop_solve(guess::Mission_Guess)
v∞_out = guess.launch_v∞
time = utc2et(Dates.format(guess.launch_date,"yyyy-mm-ddTHH:MM:SS"))
current_planet = Earth
start = [spkssb(Earth.id, time, "ECLIPJ2000"); 0.0] + [ zeros(3); guess.launch_v∞; guess.start_mass ]
corrected_phases = Vector{Phase}()
for i in 1:length(guess.phases)
phase = guess.phases[i]
time += phase.tof
goal = spkssb(phase.planet.id, time, "ECLIPJ2000") + [zeros(3); phase.v∞_in]
result = solve_phase( start, goal, guess.sc, phase.tof, phase.thrust_profile)
converged(result) || return Bad_Mission() # Drop if it's not working
corrected_phase = Phase(phase.planet, phase.v∞_in, phase.δ, phase.tof, result.zero)
push!(corrected_phases, corrected_phase)
mass_used = mass_consumption(guess.sc, corrected_phase)
if i != length(guess.phases)
v∞_out = calc_turn(current_planet, phase.planet, guess.phases[i+1].planet, phase.v∞_in, phase.δ)
current_planet = phase.planet
planet_state = [spkssb(current_planet.id, time, "ECLIPJ2000"); 0.0]
start = planet_state + [ zeros(3); v∞_out; start_mass - mass_used ]
end end
end end
return best, archive return Mission(guess.sc, guess.start_mass, guess.launch_date, guess.launch_v∞, corrected_phases)
end end
"""
The cost function for the mission
TODO: This will probably move and eventually be passed as an argument
"""
function cost(mission::Mission, max_C3::Float64, max_v∞::Float64)
mass_used = 0.0
for phase in mission.phases mass_used += mass_used(sc, phase) end
mass_percent = mass_used/mission.sc.dry_mass
C3_percent = ( mission.launch_v∞ mission.launch_v∞ ) / max_C3
v∞_percent = norm(mission.phases[end].v∞_in) / max_v∞
return 3mass_percent + C3_percent + v∞_percent
end
function mbh( flybys::Vector{Body},
sc::Sc,
start_mass::Float64,
launch_window::Pair{Date},
max_C3::Float64,
max_v∞::Float64,
latest_arrival::Date,
primary::Body=Sun;
search_patience::Int=1_000,
drill_patience::Int=50)
# Let's pseudo-code this bitch
#
# First, we need a function (mission_guess below) that randomly generates the:
# - Launch date
# - Launch v∞_out
# - for each phase:
# - tof
# - v∞_in
# - turning angle
#
# Also need a function (inner_loop_solve below) that takes the generated decision vector guess and
# attempts to correct it with the NLP solver. It will either converge or not.
#
# Also need a costing function (may be provided potentially)
#
# Also need a perturb function
#
guess = mission_guess(flybys, sc, start_mass, launch_window, max_C3, max_v∞, latest_arrival, primary)
inner_loop_solve(guess)
# search_count = 0
# x_current = "Bad"
# while search_count < search_patience
# search_count += 1
# drill_count = 0
# x_star = inner_loop_solve(mission_guess())
# if x_star.converged
# if cost(x_star) < cost(x_current)
# x_current = x_star
# while drill_count < drill_patience
# x_star = inner_loop_solve(perturb(x_current))
# if x_star.converged and cost(x_star) < cost(x_current)
# x_current = x_star
# drill_count = 0
# else
# drill_count += 1
# end
# end
# push!(archive, x_current)
# end
# end
#
#
end

View File

@@ -31,8 +31,7 @@ function solve_phase( start::Vector{Float64},
end end
result = nlsolve(f!, atanh.(x0), ftol=tol, autodiff=:forward, iterations=num_iters) result = nlsolve(f!, atanh.(x0), ftol=tol, autodiff=:forward, iterations=num_iters)
converged(result) || throw(Convergence_Error()) if converged(result) result.zero = tanh.(result.zero) end
result.zero = tanh.(result.zero)
return result return result

View File

@@ -68,4 +68,4 @@ end
""" """
Convenience function for propagating a state with no thrust Convenience function for propagating a state with no thrust
""" """
prop(x::Vector{Float64}, t::Float64, p::Body=Sun) = prop(zeros(1000,3), x, no_thrust, t, p)[1] prop(x::Vector{Float64}, t::Float64, p::Body=Sun) = prop(zeros(1000,3), [x;1e10], no_thrust, t, p)[1]

72
julia/src/lamberts.jl Normal file
View File

@@ -0,0 +1,72 @@
using Dates
"""
I didn't want to have to write this...I'm going to try to do this as quickly as possible from old,
bad code
Convenience function for solving lambert's problem
"""
function lamberts(planet1::Body,planet2::Body,leave::DateTime,arrive::DateTime)
time_leave = utc2et(Dates.format(leave,"yyyy-mm-ddTHH:MM:SS"))
time_arrive = utc2et(Dates.format(arrive,"yyyy-mm-ddTHH:MM:SS"))
tof_req = time_arrive - time_leave
state1 = [spkssb(planet1.id, time_leave, "ECLIPJ2000"); 0.0]
state2 = [spkssb(planet2.id, time_arrive, "ECLIPJ2000"); 0.0]
r1 = state1[1:3] ; r1mag = norm(r1)
r2 = state2[1:3] ; r2mag = norm(r2)
μ = Sun.μ
cos_dθ = dot(r1,r2)/(r1mag*r2mag)
= atan(r2[2],r2[1]) - atan(r1[2],r1[1])
= > 2π ? -2π :
= < 0.0 ? +2π :
DM = abs() > π ? -1 : 1
A = DM * (r1mag * r2mag * (1 + cos_dθ))
== 0 || A == 0 && error("Can't solve Lambert's Problem")
ψ, c2, c3 = 0, 1//2, 1//6
ψ_down = -4π ; ψ_up = 4π^2
y = r1mag + r2mag + (A*(ψ*c3 - 1)) / (c2) ; χ = (y/c2)
tof = ( χ^3*c3 + A*(y) ) / (μ)
i = 0
while abs(tof-tof_req) > 1e-2
y = r1mag + r2mag + (A*(ψ*c3 - 1)) / (c2)
while y/c2 <= 0
# println("You finally hit that weird issue... ")
ψ += 0.1
if ψ > 1e-6
c2 = (1 - cos((ψ))) / ψ ; c3 = ((ψ) - sin((ψ))) / (ψ^3)
elseif ψ < -1e-6
c2 = (1 - cosh((-ψ))) / ψ ; c3 = (-(-ψ) + sinh((-ψ))) / ((-ψ)^3)
else
c2 = 1//2 ; c3 = 1//6
end
y = r1mag + r2mag + (A*(ψ*c3 - 1)) / (c2)
end
χ = (y/c2)
tof = ( c3*χ^3 + A*(y) ) / (μ)
tof < tof_req ? ψ_down = ψ : ψ_up = ψ
ψ = (ψ_up + ψ_down) / 2
if ψ > 1e-6
c2 = (1 - cos((ψ))) / ψ ; c3 = ((ψ) - sin((ψ))) / (ψ^3)
elseif ψ < -1e-6
c2 = (1 - cosh((-ψ))) / ψ ; c3 = (-(-ψ) + sinh((-ψ))) / ((-ψ)^3)
else
c2 = 1//2 ; c3 = 1//6
end
i += 1
i > 500 && return [NaN,NaN,NaN],[NaN,NaN,NaN]
end
f = 1 - y/r1mag ; g_dot = 1 - y/r2mag ; g = A * (y/μ)
v0t = (r2 - f*r1)/g ; vft = (g_dot*r2 - r1)/g
return v0t - state1[4:6], vft - state2[4:6], tof_req
end

61
julia/src/mission.jl Normal file
View File

@@ -0,0 +1,61 @@
using Dates
export Phase, Mission_Guess, Mission, Bad_Mission
export test_phase1, test_phase2
export test_mission_guess, test_mission_guess_simple
export test_mission, test_mission_simple
struct Phase
planet::Body
v∞_in::Vector{Float64}
δ::Float64
tof::Float64
thrust_profile::Matrix{Float64}
end
const test_phase1 = Phase(Venus, [10.4321, -6.3015, -0.01978], 0.2, 1.30464e7, zeros(20,3))
const test_phase2 = Phase(Jupiter, [0.3, 7.1, 0.2], 2π, 3.9year, zeros(20,3))
struct Mission_Guess
sc::Sc
start_mass::Float64
launch_date::DateTime
launch_v∞::Vector{Float64}
phases::Vector{Phase}
converged::Bool
end
Mission_Guess(args...) = Mission_Guess(args..., false)
const test_mission_guess = Mission_Guess( bepi,
12_000.,
DateTime(1992, 11, 19),
[-3.4, 1.2, 0.1],
[test_phase1, test_phase2] )
const test_mission_guess_simple = Mission_Guess(bepi,
12_000.,
DateTime(1992, 11, 19),
[-3.4, 1.2, 0.1],
[test_phase1])
struct Mission
sc::Sc
start_mass::Float64
launch_date::DateTime
launch_v∞::Vector{Float64}
phases::Vector{Phase}
converged::Bool
end
Mission(args...) = Mission(args..., true)
const test_mission = Mission(bepi,
12_000.,
DateTime(1992, 11, 19),
[-3.4, 1.2, 0.1],
[test_phase1, test_phase2])
const test_mission_simple = Mission(bepi,
12_000.,
DateTime(1992, 11, 19),
[4.2984, -4.3272668, 1.43752],
[test_phase1])
struct Bad_Mission
converged::Bool
end
Bad_Mission() = Bad_Mission(false)

View File

@@ -4,111 +4,42 @@
println("Testing Monotonic Basin Hopper") println("Testing Monotonic Basin Hopper")
# Initial Setup # First we test the random mission guess generator
# sc = Sc("test") flybys = [Earth, Venus, Jupiter]
# a = rand(50_000:1.:100_000) launch_window = ( DateTime(2021,12,25), DateTime(2025,12,25) )
# e = rand(0.01:0.01:0.5) max_C3 = 10.
# i = rand(0.01:0.01:π/6) max_v∞ = 8.
# T = 2π*√(a^3/μs["Earth"]) latest_arrival = DateTime(2035,12,25)
# prop_time = 0.5T random_guess = Thesis.mission_guess(flybys, bepi, 12_000., launch_window, max_C3, max_v∞, latest_arrival)
# n = 20 @test typeof(random_guess) == Mission_Guess
# start_mass = 10_000.
# # A simple orbit raising
# start = [oe_to_xyz([ a, e, i, 0., 0., 0. ], μs["Earth"]); start_mass]
# Tx, Ty, Tz = conv_T(repeat([0.8], n), repeat([0.], n), repeat([0.], n),
# start,
# sc,
# prop_time,
# μs["Earth"])
# nominal_path, final = prop(hcat(Tx, Ty, Tz), start, sc, μs["Earth"], prop_time)
# new_T = 2π*√(xyz_to_oe(final, μs["Earth"])[1]^3/μs["Earth"])
# # Find the best solution
# best, archive = mbh(start,
# final,
# sc,
# μs["Earth"],
# 0.0,
# prop_time,
# n,
# search_patience_lim=25,
# drill_patience_lim=50,
# verbose=true)
# # Test and plot
# @test best.converged
# transit, calc_final = prop(best.zero, start, sc, μs["Earth"], prop_time)
# initial_path = prop(zeros((100,3)), start, sc, μs["Earth"], T)[1]
# after_transit = prop(zeros((100,3)), calc_final, sc, μs["Earth"], new_T)[1]
# final_path = prop(zeros((100,3)), final, sc, μs["Earth"], new_T)[1]
# savefig(plot_orbits([initial_path, nominal_path, final_path],
# labels=["initial", "nominal transit", "final"],
# colors=["#FF4444","#44FF44","#4444FF"]),
# "../plots/mbh_nominal.html")
# savefig(plot_orbits([initial_path, transit, after_transit, final_path],
# labels=["initial", "transit", "after transit", "final"],
# colors=["#FFFFFF", "#FF4444","#44FF44","#4444FF"]),
# "../plots/mbh_best.html")
# i = 0
# best_mass = calc_final[end]
# nominal_mass = final[end]
# masses = []
# for candidate in archive
# @test candidate.converged
# path2, calc_final = prop(candidate.zero, start, sc, μs["Earth"], prop_time)
# push!(masses, calc_final[end])
# @test norm(calc_final[1:6] - final[1:6]) < 1e-4
# end
# @test best_mass == maximum(masses)
# # This won't always work since the test is reduced in fidelity,
# # but hopefully will usually work:
# @test (start_mass - best_mass) < 1.1 * (start_mass - nominal_mass)
# Now let's test a sun case. This should be pretty close to begin with
start_mass = 10_000.
launch_date = DateTime(2016,3,28)
launch_j2000 = utc2et(Dates.format(launch_date,"yyyy-mm-ddTHH:MM:SS"))
earth_start = [spkssb(ids["Earth"], launch_j2000, "ECLIPJ2000"); start_mass]
earth_speed = earth_start[4:6]
v∞ = 3.0*earth_speed/norm(earth_speed)
start = earth_start + [zeros(3); v∞; 0.0]
tof = 3600*24*30*10.75
mars_state = [spkssb(Thesis.ids["Mars"], launch_j2000+tof, "ECLIPJ2000"); start_mass]
final = mars_state + [ zeros(3); [-1.1, -3., -2.6]; 0.0 ]
a = xyz_to_oe(final, μs["Sun"])[1]
T = 2π*(a^3/μs["Sun"])
n = 20
# But we'll plot to see # Then the perturb function
beginning_path = prop(zeros(100,3), start, Sc("test"), μs["Sun"], tof)[1] mission_guess = Thesis.perturb(test_mission)
ending_path = prop(zeros(100,3), final, Sc("test"), μs["Sun"], T)[1] @test mission_guess.launch_date != test_mission.launch_date
savefig(plot_orbits([beginning_path, ending_path], @test mission_guess.launch_v∞ != test_mission.launch_v∞
labels=["initial", "ending"], for i in 1:2
colors=["#F2F", "#2F2"]), @test mission_guess.phases[i].v∞_in != test_mission.phases[i].v∞_in
"../plots/mbh_sun_initial.html") @test mission_guess.phases[i].δ != test_mission.phases[i].δ
@test mission_guess.phases[i].tof != test_mission.phases[i].tof
# Now we solve and plot the new case end
best, archive = mbh(start, @test !mission_guess.converged
final,
Sc("test"), # # Then the inner loop builder function
μs["Sun"], mission = Thesis.inner_loop_solve(test_mission_guess)
0.0, @test !mission.converged
tof,
n,
search_patience_lim=25,
drill_patience_lim=50,
verbose=true)
solved_path, solved_state = prop(best.zero, start, Sc("test"), μs["Sun"], tof)
ending_path = prop(zeros(100,3), final, Sc("test"), μs["Sun"], T)[1]
savefig(plot_orbits([solved_path, ending_path],
labels=["best", "ending"],
colors=["#C2F", "#2F2"]),
"../plots/mbh_sun_solved.html")
# We'll just make sure that this at least converged correctly
@test norm(solved_state[1:6] - final[1:6]) < 1e-4
# For the valid case we need to use a lambert's solver
# TODO: This is probably not acceptable for how close I have to be
leave = DateTime(1992,11,19)
arrive = DateTime(1993,4,1)
time_leave = utc2et(Dates.format(leave,"yyyy-mm-ddTHH:MM:SS"))
time_arrive = utc2et(Dates.format(arrive,"yyyy-mm-ddTHH:MM:SS"))
earth_state = [spkssb(Earth.id, time_leave, "ECLIPJ2000"); 0.0]
venus_state = [spkssb(Venus.id, time_arrive, "ECLIPJ2000"); 0.0]
v∞_out, v∞_in, tof = Thesis.lamberts(Earth, Venus, leave, arrive)
phase = Phase(Venus, 1.0001v∞_in, 0.2, tof, 0.0*ones(20,3))
mission_guess = Mission_Guess(bepi, 12_000., leave, v∞_out, [phase])
mission = Thesis.inner_loop_solve(mission_guess)
@test mission.converged
end end

View File

@@ -4,10 +4,18 @@ using LinearAlgebra
using SPICE using SPICE
using Thesis using Thesis
@testset "All Tests" begin try
include("plotting.jl") furnsh("../../spice_files/naif0012.tls")
include("inner_loop/laguerre-conway.jl") furnsh("../../spice_files/de430.bsp")
include("inner_loop/propagator.jl") catch
include("inner_loop/phase.jl") furnsh("spice_files/naif0012.tls")
# include("inner_loop/monotonic_basin_hopping.jl") furnsh("spice_files/de430.bsp")
end
@testset "All Tests" begin
# include("plotting.jl")
# include("inner_loop/laguerre-conway.jl")
# include("inner_loop/propagator.jl")
# include("inner_loop/phase.jl")
include("inner_loop/monotonic_basin_hopping.jl")
end end