First draft of presentation
This commit is contained in:
@@ -1,25 +1,26 @@
|
||||
\documentclass{beamer}
|
||||
\usetheme{Luebeck}
|
||||
\usetheme{Antibes}
|
||||
|
||||
\usepackage{xfrac}
|
||||
|
||||
\definecolor{color1}{HTML}{3A4040}
|
||||
\definecolor{color2}{HTML}{F5F2F8}
|
||||
\definecolor{color3}{HTML}{B65D4E}
|
||||
\definecolor{color3}{HTML}{C47B6E}
|
||||
\definecolor{color4}{HTML}{B6AD96}
|
||||
\definecolor{color5}{HTML}{A96041}
|
||||
\definecolor{color5}{HTML}{B65D4E}
|
||||
|
||||
\setbeamercolor*{structure}{bg=color3,fg=color3}
|
||||
\setbeamercolor*{palette primary}{fg=color1,bg=color4}
|
||||
\setbeamercolor*{palette secondary}{fg=color1,bg=color2}
|
||||
\setbeamercolor*{palette tertiary}{fg=color1,bg=color2}
|
||||
\setbeamercolor*{palette quaternary}{fg=color1,bg=color3}
|
||||
\setbeamercolor*{palette secondary}{fg=color1,bg=color4}
|
||||
\setbeamercolor*{palette tertiary}{fg=color1,bg=color3}
|
||||
\setbeamercolor*{palette quaternary}{fg=color1,bg=color5}
|
||||
\setbeamercolor{alerted text}{fg=color1,bg=color3}
|
||||
\setbeamercolor{titlelike}{bg=color2,fg=color1}
|
||||
\setbeamercolor*{titlelike}{bg=color2,fg=color1}
|
||||
\setbeamercolor{frametitle}{bg=color1,fg=color2}
|
||||
\setbeamercolor{background canvas}{bg=color2,fg=color2}
|
||||
|
||||
\title{Designing Optimal Low-Thrust Interplanetary Trajectories}
|
||||
\subtitle{Utilizing Monotonic Basin Hopping}
|
||||
\title{Designing Optimal Low-Thrust Interplanetary Trajectories Utilizing Monotonic Basin Hopping}
|
||||
\author{Richard Connor Johnstone}
|
||||
\institute{University of Colorado -- Boulder}
|
||||
\date{\today}
|
||||
@@ -32,19 +33,589 @@
|
||||
|
||||
\section{Introduction}
|
||||
|
||||
\begin{frame} \frametitle{First Frame}
|
||||
\begin{itemize}
|
||||
\item Item 1
|
||||
\item Item 2
|
||||
\end{itemize}
|
||||
\subsection{Motivation}
|
||||
|
||||
\begin{frame} \frametitle{Motivation}
|
||||
How can we leverage existing technologies and techniques to determine
|
||||
optimally-controlled trajectories to targets in interplanetary space?
|
||||
\end{frame}
|
||||
|
||||
\note{Today I'll be discussing my research in determining optimal trajectories
|
||||
for interplanetary mission objectives. Numerous scientific and engineering advances have
|
||||
been made possible by the recognition of optimal trajectories in interplanetary space.}
|
||||
|
||||
\begin{frame} \frametitle{Voyager}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[height=0.6\paperheight]{LaTeX/fig/voyager}
|
||||
\caption{Voyager mission trajectory\cite{nasa_voyager}}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\note{For instance, the Voyagers I and II missions were launched in 1977 because of a
|
||||
once-in-a-lifetime window in which the spacecraft were able to, on a single tour, visit all
|
||||
four gas giant outer planets. These tours were only made possible because of the ability to
|
||||
compute planetary ephemeris and map out a chain of gravity assists.}
|
||||
|
||||
\begin{frame} \frametitle{Bepi-Colombo}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[height=0.6\paperheight]{LaTeX/fig/bepicolombo}
|
||||
\caption{Bepi-Colombo mission trajectory\cite{jehnBepi}}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\note{More recently, ESA has also been able to take advantage of gravity assists to send the
|
||||
spacecraft Bepi-Colombo into a trajectory that rendezvous 6 times with Mercury. While this
|
||||
mission did utilize a number of gravity assists, it also utilized another technology
|
||||
well-suited to interplanetary travel: low-thrust electric propulsion systems}
|
||||
|
||||
\subsection{Context}
|
||||
|
||||
\begin{frame} \frametitle{Low Thrust Electric Propulsion}
|
||||
Allows for some advantages in achieving more interesting mission objectives:
|
||||
\begin{itemize}
|
||||
\item Much higher thrusting efficiency (in terms of fuel usage) compared to high
|
||||
thrust propulsive systems
|
||||
\item Allows for a greater overall $\Delta V$ budget for a given mission
|
||||
\end{itemize}
|
||||
|
||||
\pause
|
||||
But requires some additional considerations:
|
||||
\begin{itemize}
|
||||
\item Requires significantly more time to achieve the same velocity change
|
||||
\item Defines a new system dynamics control, which must be accounted for
|
||||
continuously at each point in time, requiring additional computation for
|
||||
optimization
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\note{Thanks to their ability to provide thrust extremely efficiently, these low-thrust
|
||||
engines can be a powerful tool for enabling impressive scientific objectives, but they do
|
||||
provide an additional layer of complexity for the mission designer, as their continuous
|
||||
thrust nature changes the underlying system dynamics that would have been used to optimize a
|
||||
mission such as Voyager, which did not employ low-thrust engines.}
|
||||
|
||||
% \begin{frame} \frametitle{Current tools}
|
||||
% Indirect Methods:
|
||||
% \begin{itemize}
|
||||
% \item CHEBYTOP
|
||||
% \item NEWSEP
|
||||
% \item SEPTOP
|
||||
% \item VARITOP
|
||||
% \end{itemize}
|
||||
|
||||
% Direct Methods:
|
||||
% \begin{itemize}
|
||||
% \item EMTG
|
||||
% \item GALLOP
|
||||
% \item MALTO
|
||||
% \item PAGMO
|
||||
% \end{itemize}
|
||||
% \end{frame}
|
||||
|
||||
% \note{However, many interesting techniques have been developed to combat this issue,
|
||||
% particularly in recent years. A number of different algorithms have been developed }
|
||||
|
||||
% \subsection{Scope}
|
||||
|
||||
% \begin{frame} \frametitle{First Frame}
|
||||
% \begin{itemize}
|
||||
% \item Item 1
|
||||
% \item Item 2
|
||||
% \end{itemize}
|
||||
% \end{frame}
|
||||
|
||||
% \subsection{Problem Statement}
|
||||
|
||||
% \begin{frame} \frametitle{First Frame}
|
||||
% \begin{itemize}
|
||||
% \item Item 1
|
||||
% \item Item 2
|
||||
% \end{itemize}
|
||||
% \end{frame}
|
||||
|
||||
\section{Trajectory Optimization Background}
|
||||
|
||||
\subsection{System Dynamics}
|
||||
|
||||
\begin{frame} \frametitle{Two Body Problem}
|
||||
\begin{columns}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
Assumptions:
|
||||
\begin{itemize}
|
||||
\item There are only two bodies in the system
|
||||
\item The only force acting between the two bodies is gravitational
|
||||
\item The two masses are to be modeled as constant point masses
|
||||
\end{itemize}
|
||||
\end{column}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.45\paperwidth]{LaTeX/fig/2bp}
|
||||
\end{figure}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\note{In order to understand how to optimize these trajectories, we'll first have to
|
||||
understand the underlying system dynamics. I won't spend too long on this, as most of you
|
||||
should have a good grasp on spacecraft dynamics, but we'll briefly analyse the most basic
|
||||
model for spaceflight dynamics: the two body problem. This model requires us to make a
|
||||
couple of basic assumptions. First that we are only concerned with the gravitational
|
||||
influence between the nominative two bodies: the spacecraft and the planetary body around
|
||||
which it is orbiting. Secondly, both of these bodies are modeled as point masses with
|
||||
constant mass. This removes the need to account for non-uniform densities and asymmetry.}
|
||||
|
||||
\begin{frame} \frametitle{Two Body Problem}
|
||||
\begin{columns}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{align*}
|
||||
m_2 \ddot{\vec{r}}_2 &= - \frac{G m_1 m_2}{r^2} \frac{\vec{r}}{\left| r \right|} \\
|
||||
m_1 \ddot{\vec{r}}_1 &= \frac{G m_2 m_1}{r^2} \frac{\vec{r}}{\left| r \right|}
|
||||
\end{align*}
|
||||
\end{column}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.45\paperwidth]{LaTeX/fig/2bp}
|
||||
\end{figure}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\note{From Newton's second law and the law of universal gravitation, we can then model this
|
||||
force with this equation. Where...}
|
||||
|
||||
\begin{frame} \frametitle{Two Body Problem}
|
||||
\begin{columns}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{equation*}
|
||||
\ddot{\vec{r}} = \ddot{\vec{r}}_2 - \ddot{\vec{r}}_1 =
|
||||
- \frac{G \left( m_1 + m_2 \right)}{r^2} \frac{\vec{r}}{\left| r \right|}
|
||||
\end{equation*}
|
||||
\end{column}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.45\paperwidth]{LaTeX/fig/2bp}
|
||||
\end{figure}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\note{Dividing by the mass, we can derive the acceleration...}
|
||||
|
||||
\begin{frame} \frametitle{Two Body Problem}
|
||||
\begin{columns}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{align*}
|
||||
\mu &= G (m_1 + m_2) \approx G m_1 \\
|
||||
\ddot{\vec{r}} &= - \frac{\mu}{r^2} \hat{r}
|
||||
\end{align*}
|
||||
\end{column}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.45\paperwidth]{LaTeX/fig/2bp}
|
||||
\end{figure}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\note{Finally, we'll make the assumption that the mass of the spacecraft, is significantly
|
||||
smaller than the mass of the planet. This allows us to represents the gravitational
|
||||
parameter as a function of the planetary mass alone, rather than both combined. With this
|
||||
assumption, we can model the system dynamics with this analytically solvable equation}
|
||||
|
||||
\begin{frame} \frametitle{Kepler's Laws}
|
||||
\begin{itemize}
|
||||
\item Each planet's orbit is an ellipse with the Sun at one of the foci.
|
||||
\item The area swept out by the imaginary line connecting the primary and secondary
|
||||
bodies increases linearly with respect to time.
|
||||
\item The square of the orbital period is proportional to the cube of the semi-major
|
||||
axis of the orbit, regardless of eccentricity.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\note{In the early 1600s, Johannes Kepler determined three laws in order to describe the
|
||||
motion of a satellite. These are:}
|
||||
|
||||
\begin{frame} \frametitle{Kepler's Laws}
|
||||
\begin{equation*}
|
||||
r = \frac{\sfrac{h^2}{\mu}}{1 + e \cos(\theta)}
|
||||
\end{equation*}
|
||||
|
||||
\vspace{1em}
|
||||
|
||||
\begin{equation*}
|
||||
\frac{\Delta t}{T} = \frac{E - e \sin E}{2 \pi}
|
||||
\end{equation*}
|
||||
|
||||
\vspace{1em}
|
||||
|
||||
\begin{equation*}
|
||||
T = 2 \pi \sqrt{\frac{a^3}{\mu}}
|
||||
\end{equation*}
|
||||
\end{frame}
|
||||
|
||||
\note{By utilizing these laws and some geometric properties of conic sections, we can
|
||||
actually take them a step further, producing the following extremely useful equations for
|
||||
representing spacecraft motion:}
|
||||
|
||||
\begin{frame} \frametitle{Kepler's Equation}
|
||||
\begin{equation*}
|
||||
\frac{\Delta t}{T} = \frac{E - e \sin E}{2 \pi}
|
||||
\end{equation*}
|
||||
|
||||
\vspace{1em}
|
||||
|
||||
\begin{equation*}
|
||||
T = 2 \pi \sqrt{\frac{a^3}{\mu}}
|
||||
\end{equation*}
|
||||
|
||||
\vspace{1em}
|
||||
|
||||
\begin{equation*}
|
||||
M = \sqrt{\frac{\mu}{a^3}} \Delta t = E - e \sin E
|
||||
\end{equation*}
|
||||
\end{frame}
|
||||
|
||||
\note{The second of these, which we'll take particular notice of, is considered Kepler's
|
||||
equation. It provides a method for relating the time since periapsis of a satellite in an
|
||||
orbit to the satellite's position along that orbit. The solution to this equatin can then be
|
||||
used to solve for a spacecraft's position, which is very useful for direct optimization
|
||||
methods.}
|
||||
|
||||
% \note{Finally, though, we'll need to actually solve Kepler's equation. For this purpose
|
||||
% we'll use a generic root-finding method first proposed by Laguerre in the 19th century.
|
||||
% Conway first explored its application on Kepler's equation in the 1980s and found it to be
|
||||
% more robust at converging to a solution, with similar convergence speed, to the more common
|
||||
% variations of the Newton-Raphson method}
|
||||
|
||||
\subsection{Interplanetary Trajectories}
|
||||
|
||||
\begin{frame} \frametitle{Patched Conics}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[height=0.7\paperheight]{LaTeX/fig/patched_conics}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\note{Now that we have a grasp on the underlying system dynamics, we can consider the
|
||||
additions needed for interplanetary travel specifically. To this end, we'll consider the
|
||||
method of patched conics, a technique for reconciling the fact that the spacecraft will not
|
||||
be under the influence of a single body, but actually a number of different bodies over the
|
||||
course of its trajectory. To achieve this, we'll break the trajectory up into different
|
||||
sub-trajectories, each governed by a distinct single body when the spacecraft is within the
|
||||
sphere of influence of that particular body...}
|
||||
|
||||
\begin{frame} \frametitle{Gravity Assist}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[height=0.7\paperheight]{LaTeX/fig/flyby}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\note{You'll notice, though, that the trajectories within the sphere of influence aren't
|
||||
elliptical orbits. They're hyperbolic. Because of this fact, we can take advantage of the
|
||||
gravity flyby effect. Because of the nature of the hyperbolic arc the spacecraft takes
|
||||
around the planet, the spacecraft leaves in a different direction than it arrives. This
|
||||
effect can be targeted up to a point, and a free "maneuver" can be achieved, changing the
|
||||
direction of the spacecraft's motion relative to the Sun.}
|
||||
|
||||
\subsection{Low Thrust Trajectories}
|
||||
|
||||
\begin{frame} \frametitle{Sims-Flanagan Transcription}
|
||||
\begin{columns}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{itemize}
|
||||
\item Each trajectory broken into $n$ segments
|
||||
\item Impulsive thrust at the center of each one, assuming equal thrust
|
||||
over the segment
|
||||
\item Mass decremented over the duration of the segment
|
||||
\end{itemize}
|
||||
\end{column}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.45\paperwidth]{LaTeX/fig/sft}
|
||||
\end{figure}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\note{We'll also need to discretize the low-thrust controls in order to apply a direct
|
||||
optimization. This is achieved, in this thesis and many other implementations, with the
|
||||
Sims-Flanagan transcription. The trajectory is broken up into a number of smaller
|
||||
trajectories with a single impulsive thrust in the center of each. Effectively, this
|
||||
allows...}
|
||||
|
||||
\begin{frame} \frametitle{Control Vector Description}
|
||||
\begin{columns}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{align*}
|
||||
F_r &= F \cos(\beta) \sin (\alpha) \\
|
||||
F_\theta &= F \cos(\beta) \cos (\alpha) \\
|
||||
F_h &= F \sin(\beta)
|
||||
\end{align*}
|
||||
\end{column}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.45\paperwidth]{LaTeX/fig/thrust_angle}
|
||||
\end{figure}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\note{Finally, in order to better understand the thrust control vector, we need a useful
|
||||
frame. For this purpose, I use the r theta h frame in which the r axis is... This is useful
|
||||
because the theta axis is aligned fairly close to the velocity direction. That allows for a
|
||||
useful framework in which to analyze the control thrusts. Thrusts with a low alpha angle are
|
||||
useful for raising the energy of the orbit, while other thrusts (either alpha around pi/2 or
|
||||
high beta) are useful for steering controls.}
|
||||
|
||||
\section{Algorithm Overview}
|
||||
|
||||
\subsection{Trajectory Composition}
|
||||
|
||||
\begin{frame} \frametitle{Input Description}
|
||||
\footnotesize{
|
||||
\begin{itemize}
|
||||
\item \textbf<1>{Spacecraft dry mass in kilograms}
|
||||
\item \textbf<1>{Total starting mass of the Spacecraft in kilograms}
|
||||
\item \textbf<2>{Thruster Specific Impulse in seconds}
|
||||
\item \textbf<2>{Thruster Maximum Thrusting Force in Newtons}
|
||||
\item \textbf<2>{Thruster Duty Cycle Percentage}
|
||||
\item \textbf<2>{Number of Thrusters on Spacecraft}
|
||||
\item \textbf<3>{The Launch Window Boundaries}
|
||||
\item \textbf<3>{The Latest Arrival Date}
|
||||
\item \textbf<4>{A Maximum Acceptable $V_\infty$ at arrival in kilometers per
|
||||
second}
|
||||
\item \textbf<4>{A Maximum Acceptable $C_3$ at launch in kilometers per second
|
||||
squared}
|
||||
\item \textbf<4>{A cost function relating the mass usage, $v_\infty$ at arrival, and
|
||||
$C_3$ at launch to a cost}
|
||||
\item \textbf<5>{A list of flyby planets starting with Earth and ending with the
|
||||
destination}
|
||||
\end{itemize}
|
||||
}
|
||||
\end{frame}
|
||||
|
||||
\note{In order to fully understand the optimization algorithm, it makes sense to first
|
||||
understand the variables that won't be optimized. These will represent the mission
|
||||
parameters used as inputs to the algorithm. These first two will essentially size the
|
||||
spacecraft that we'll be using. Then the next groups will define the thrusters, the launch
|
||||
and arrival windows, the cost function to be used by the direct optimizer, and finally the
|
||||
flybys that the spacecraft will leverage on its trajectory.}
|
||||
|
||||
\subsection{Inner Loop Implementation}
|
||||
|
||||
\begin{frame} \frametitle{Non-Linear Programming Approach - Definition}
|
||||
A Non-Linear Programming Problem involves finding a solution that optimizes a function:
|
||||
|
||||
\begin{equation*}
|
||||
f(\vec{x})
|
||||
\end{equation*}
|
||||
|
||||
Subject to constraints:
|
||||
\begin{align*}
|
||||
\vec{g}(\vec{x}) &\le 0 \\
|
||||
\vec{h}(\vec{x}) &= 0
|
||||
\end{align*}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\note{Now we'll treat the trajectory as a direct non-linear programming optimization
|
||||
problem. This provides a general approach to determining a local optima to a scalar function
|
||||
f of a vector-valued input, x, subject to constraints g and h, defined as can be seen here.}
|
||||
|
||||
\begin{frame} \frametitle{Non-Linear Programming Approach - Input Vector}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[height=0.7\paperheight]{LaTeX/flowcharts/nlp}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\note{So we need simply to define the function, constraints, and the input vector. Starting
|
||||
with the input vector, we need to determine...}
|
||||
|
||||
\begin{frame} \frametitle{Non-Linear Programming Approach - Constraints}
|
||||
\begin{itemize}
|
||||
\item For every phase other than the final:
|
||||
\begin{itemize}
|
||||
\item The minimum periapsis of the hyperbolic flyby arc must be above some
|
||||
user-specified minimum safe altitude.
|
||||
\item The magnitude of the incoming hyperbolic velocity must match the magnitude
|
||||
of the outgoing hyperbolic velocity.
|
||||
\item The spacecraft position must match the planet's position (within bounds)
|
||||
at the end of the phase.
|
||||
\end{itemize}
|
||||
\item For the final phase:
|
||||
\begin{itemize}
|
||||
\item The spacecraft position must match the planet's position (within bounds)
|
||||
at the end of the phase.
|
||||
\item The final mass must be greater than the dry mass of the craft.
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\note{And we can also determine a series of constraints...}
|
||||
|
||||
\begin{frame} \frametitle{Non-Linear Programming Approach - Cost Function}
|
||||
\begin{equation*}
|
||||
J(\vec{x}, m_{dry}, C_{3,max}) = 3 \left| \frac{m(\vec{x})}{m_{dry}} \right| +
|
||||
\left| \frac{C_3(\vec{x})}{C_{3,max}} \right|
|
||||
\end{equation*}
|
||||
\end{frame}
|
||||
|
||||
\note{Finally, the cost function was designed to be user-specified. However, for the
|
||||
implementation of this particular project, I utilized a combination of the normalized fuel
|
||||
usage and launch c3. Now we have a fully-defined non-linear programming problem that can be
|
||||
optimized using any direct method optimization scheme.}
|
||||
|
||||
\subsection{Outer Loop Implementation}
|
||||
|
||||
\begin{frame} \frametitle{Monotonic Basin Hopping}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[height=0.7\textheight]{LaTeX/flowcharts/mbh}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\note{Now we have a method for finding local optima in the vicinity of an input vector, but
|
||||
what we're after is the global optima, meaning that we need a method for testing a variety
|
||||
of input vectors, each of which could either fail to produce a valid trajectory after the
|
||||
inner loop or produce a valid solution that may or may not be in a "basin", or collection of
|
||||
nearby valid solutions with a single "regional" optimum. In order to approach this problem,
|
||||
I've employed a Monotonic Basin Hopping algorithm. (Step through each of the steps)}
|
||||
|
||||
\begin{frame} \frametitle{Monotonic Basin Hopping - Perturbation PDF}
|
||||
Pareto Distribution:
|
||||
\begin{equation*}
|
||||
1 +
|
||||
\left[ \frac{s}{\epsilon} \right] \cdot
|
||||
\left[ \frac{\alpha - 1}{\frac{\epsilon}{\epsilon + r}^{-\alpha}} \right]
|
||||
\end{equation*}
|
||||
\end{frame}
|
||||
|
||||
\section{Sample Mission Analysis}
|
||||
|
||||
\subsection{Mission Scenario}
|
||||
|
||||
\begin{frame} \frametitle{Mission Scenario}
|
||||
\begin{itemize}
|
||||
\item Spacecraft starting mass: 3500 kg
|
||||
\item Thruster Specific Impulse: 3200 s
|
||||
\item Thruster Maximum Thrusting Force: 250 mN
|
||||
\item Thruster Duty Cycle: 100\%
|
||||
\item Number of Thrusters: 1
|
||||
\item The Launch Window: 2023 and 2024
|
||||
\item The Latest Arrival Date: December 31st, 2044
|
||||
\item Maximum $C_3$ at launch: $100 \frac{\text{km}^2}{\text{s}^2}$
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame} \frametitle{Flybys Analyzed}
|
||||
\begin{itemize}
|
||||
\item EJS
|
||||
\item EMJS
|
||||
\item EMMJS
|
||||
\item EMS
|
||||
\item ES
|
||||
\item EVMJS
|
||||
\item EVMS
|
||||
\item EVVJS
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Trajectory 1}
|
||||
|
||||
\begin{frame} \frametitle{Trajectory 1 - Earth → Mars → Saturn}
|
||||
\begin{figure}
|
||||
\includegraphics<1>[height=0.5\paperheight]{LaTeX/fig/EMS_plot}
|
||||
\includegraphics<2>[height=0.5\paperheight]{LaTeX/fig/EMS_plot_noplanets}
|
||||
\includegraphics<3>[height=0.5\paperheight]{LaTeX/fig/EMS_thrust_mag}
|
||||
\includegraphics<4>[height=0.5\paperheight]{LaTeX/fig/EMS_thrust_components_vnb}
|
||||
\end{figure}
|
||||
\vspace{-1em}
|
||||
\begin{table}\begin{tiny}
|
||||
\begin{tabular}{ | c c c c c c | }
|
||||
\hline
|
||||
\bfseries Flyby Selection &
|
||||
\bfseries Launch Date &
|
||||
\bfseries Mission Length &
|
||||
\bfseries Launch $C_3$ &
|
||||
\bfseries Arrival $V_\infty$ &
|
||||
\bfseries Fuel Usage \\
|
||||
& & (years) & $\left( \frac{km}{s} \right)^2$ & ($\frac{km}{s}$) & (kg) \\
|
||||
\hline
|
||||
EMS & 2024-06-27 & 7.9844 & 60.41025 & 5.816058 & 446.9227 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{tiny}\end{table}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Trajectory 2}
|
||||
|
||||
\begin{frame} \frametitle{Trajectory 2 - Earth → Mars → Jupiter → Saturn}
|
||||
\begin{figure}
|
||||
\includegraphics<1>[height=0.5\paperheight]{LaTeX/fig/EMJS_plot}
|
||||
\includegraphics<2>[height=0.5\paperheight]{LaTeX/fig/EMJS_plot_noplanets}
|
||||
\includegraphics<3>[height=0.5\paperheight]{LaTeX/fig/EMJS_thrust_mag}
|
||||
\includegraphics<4>[height=0.5\paperheight]{LaTeX/fig/EMJS_thrust_components_vnb}
|
||||
\end{figure}
|
||||
\vspace{-1em}
|
||||
\begin{table}\begin{tiny}
|
||||
\begin{tabular}{ | c c c c c c | }
|
||||
\hline
|
||||
\bfseries Flyby Selection &
|
||||
\bfseries Launch Date &
|
||||
\bfseries Mission Length &
|
||||
\bfseries Launch $C_3$ &
|
||||
\bfseries Arrival $V_\infty$ &
|
||||
\bfseries Fuel Usage \\
|
||||
& & (years) & $\left( \frac{km}{s} \right)^2$ & ($\frac{km}{s}$) & (kg) \\
|
||||
\hline
|
||||
EMJS & 2023-11-08 & 14.1072 & 40.43862 & 3.477395 & 530.6683 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{tiny}\end{table}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Results Analysis}
|
||||
|
||||
\begin{frame} \frametitle{Results Review}
|
||||
\begin{table}\begin{tiny}
|
||||
\begin{tabular}{ | c c c c c c | }
|
||||
\hline
|
||||
\bfseries Flyby Selection &
|
||||
\bfseries Launch Date &
|
||||
\bfseries Mission Length &
|
||||
\bfseries Launch $C_3$ &
|
||||
\bfseries Arrival $V_\infty$ &
|
||||
\bfseries Fuel Usage \\
|
||||
& & (years) & $\left( \frac{km}{s} \right)^2$ & ($\frac{km}{s}$) & (kg) \\
|
||||
\hline
|
||||
EMS & 2024-06-27 & 7.9844 & 60.41025 & 5.816058 & 446.9227 \\
|
||||
EMJS & 2023-11-08 & 14.1072 & 40.43862 & 3.477395 & 530.6683 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{tiny}\end{table}
|
||||
\end{frame}
|
||||
|
||||
\section{Conclusion}
|
||||
|
||||
\begin{frame}
|
||||
\begin{center}
|
||||
\begin{Huge}
|
||||
Thank You!
|
||||
\end{Huge}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\section{Introduction}
|
||||
|
||||
\section{Introduction}
|
||||
|
||||
\section{Introduction}
|
||||
|
||||
\section{Introduction}
|
||||
\bibliographystyle{plain}
|
||||
\bibliography{LaTeX/presentation}
|
||||
|
||||
\end{document}
|
||||
|
||||
Reference in New Issue
Block a user