Keeping on keeping on
This commit is contained in:
108
LaTeX/thesis.tex
108
LaTeX/thesis.tex
@@ -919,7 +919,7 @@
|
||||
phase complete one ``Mission Guess'' which is fed to the non-linear solver to generate
|
||||
one valid trajectory within the vicinity of the original Mission Guess.
|
||||
|
||||
\begin{figure}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{flowcharts/nlp}
|
||||
\caption{A flowchart of the Non-Linear Problem Solving Formulation}
|
||||
@@ -980,7 +980,7 @@
|
||||
period, the state should remain exactly the same as it began. In
|
||||
Figure~\ref{laguerre_plot} an example of such an orbit is provided.
|
||||
|
||||
\begin{figure}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{fig/laguerre_plot}
|
||||
\caption{Example of a natural trajectory propagated via the Laguerre-Conway
|
||||
@@ -1007,7 +1007,7 @@
|
||||
designer to trade-off speed of propagation and the fidelity of the results quite
|
||||
effectively.
|
||||
|
||||
\begin{figure}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{fig/spiral_plot}
|
||||
\caption{An example trajectory showing that classic continuous-thrust orbit
|
||||
@@ -1122,7 +1122,7 @@
|
||||
Section~\ref{mbh_subsection}, but Figure~\ref{mbh_flow} outlines the process steps of
|
||||
the algorithm.
|
||||
|
||||
\begin{figure}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{flowcharts/mbh}
|
||||
\caption{A flowchart visualizing the steps in the monotonic basin hopping
|
||||
@@ -1208,7 +1208,7 @@
|
||||
If this radius of periapse is then found to be less than the minimum safe radius
|
||||
(currently set to the radius of the planet plus 100 kilometers), then the process is
|
||||
repeated with new random flyby velocities until a valid seed flyby is found. These
|
||||
checks are also performed each time a mission is perturbed or generated by the nlp
|
||||
checks are also performed each time a mission is perturbed or generated by the NLP
|
||||
solver.
|
||||
|
||||
The final requirement then, is the thrust controls, which are actually quite simple.
|
||||
@@ -1307,6 +1307,31 @@
|
||||
a relatively simple but representative mission design objective, a sample mission to Saturn
|
||||
was investigated.
|
||||
|
||||
Ultimately, two optimized trajectories were selected. The results of those trajectories can
|
||||
be found in Table~\ref{results_table} below:
|
||||
|
||||
\begin{table}[h!]
|
||||
\begin{small}
|
||||
\centering
|
||||
\begin{tabular}{ | c c c c c c | }
|
||||
\hline
|
||||
\bfseries Flyby Selection &
|
||||
\bfseries Launch Date &
|
||||
\bfseries Mission Length &
|
||||
\bfseries Launch $C_3$ &
|
||||
\bfseries Arrival $V_\infty$ &
|
||||
\bfseries Fuel Usage \\
|
||||
& & (years) & $\left( \frac{km}{s} \right)^2$ & ($\frac{km}{s}$) & (kg) \\
|
||||
\hline
|
||||
EMS & 2024-06-27 & 7.9844 & 60.41025 & 5.816058 & 446.9227 \\
|
||||
EMJS & 2023-11-08 & 14.1072 & 40.43862 & 3.477395 & 530.6683 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{small}
|
||||
\caption{Comparison of the two most optimal trajectories}
|
||||
\label{results_table}
|
||||
\end{table}
|
||||
|
||||
\section{Mission Constraints}
|
||||
|
||||
The sample mission was defined to represent a general case for a near-future low-thrust
|
||||
@@ -1357,31 +1382,6 @@
|
||||
efficacy of the lower fidelity method. Orbits can be found quickly in the lower fidelity
|
||||
model and easily refined later by re-running the NLP solver at a higher $n$ value.
|
||||
|
||||
Finally, the relevant values for the two selected missions are listed below for
|
||||
reference:
|
||||
|
||||
\begin{table}[h!]
|
||||
\begin{small}
|
||||
\centering
|
||||
\begin{tabular}{ | c c c c c c | }
|
||||
\hline
|
||||
\bfseries Flyby Selection &
|
||||
\bfseries Launch Date &
|
||||
\bfseries Mission Length &
|
||||
\bfseries Launch $C_3$ &
|
||||
\bfseries Arrival $V_\infty$ &
|
||||
\bfseries Fuel Usage \\
|
||||
& & (years) & $\left( \frac{km}{s} \right)^2$ & ($\frac{km}{s}$) & (kg) \\
|
||||
\hline
|
||||
EMS & 2024-06-27 & 7.9844 & 60.41025 & 5.816058 & 446.9227 \\
|
||||
EMJS & 2023-11-08 & 14.1072 & 40.43862 & 3.477395 & 530.6683 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{small}
|
||||
\caption{Comparison of the two most optimal trajectories}
|
||||
\label{results_table}
|
||||
\end{table}
|
||||
|
||||
\subsection{Cost Function}
|
||||
|
||||
Each mission optimization also allows for the definition of a cost function. This
|
||||
@@ -1439,18 +1439,18 @@
|
||||
per second squared. However, for this phase, the thrusters are almost entirely turned
|
||||
off, allowing for a nearly-natural trajectory to Mars rendezvous.
|
||||
|
||||
\begin{figure}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{fig/EMS_plot}
|
||||
\includegraphics[width=0.9\textwidth]{fig/EMS_plot}
|
||||
\caption{Depictions of the faster Earth-Mars-Saturn trajectory found by the
|
||||
algorithm to be most efficient; planetary ephemeris arcs are shown during the phase
|
||||
in which the spacecraft approached them}
|
||||
\label{ems}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{fig/EMS_plot_noplanets}
|
||||
\includegraphics[width=0.9\textwidth]{fig/EMS_plot_noplanets}
|
||||
\caption{Another depiction of the EMS trajectory, without the planetary ephemeris
|
||||
arcs}
|
||||
\label{ems_nop}
|
||||
@@ -1467,6 +1467,21 @@
|
||||
$3500$ kilogram launch mass leaves much margin for a large impulsive thrust to enter
|
||||
into a capture orbit at Saturn.
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{fig/EMS_thrust_mag}
|
||||
\caption{The magnitude of the unit thrust vector over time for the EMS trajectory}
|
||||
\label{ems_mag}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{fig/EMS_thrust_components}
|
||||
\caption{The inertial x, y, and z components of the unit thrust vector over time for
|
||||
the EMS trajectory}
|
||||
\label{ems_components}
|
||||
\end{figure}
|
||||
|
||||
In this case the algorithm effectively realized that a higher-powered launch from
|
||||
the Earth, then a natural coasting arc to Mars flyby would provide the spacecraft with
|
||||
enough velocity that a short but efficient powered-arc to Saturn was possible with
|
||||
@@ -1509,18 +1524,18 @@
|
||||
flyby occurring in mid-April of 2026. This will prove to be helpful in comparison with
|
||||
the other result, as this mission profile is much longer.
|
||||
|
||||
\begin{figure}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{fig/EMJS_plot}
|
||||
\includegraphics[width=0.9\textwidth]{fig/EMJS_plot}
|
||||
\caption{Depictions of the slower Earth-Mars-Jupiter-Saturn trajectory found by the
|
||||
algorithm to be the second most efficient; planetary ephemeris arcs are shown during
|
||||
the phase in which the spacecraft approached them}
|
||||
\label{emjs}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{fig/EMJS_plot_noplanets}
|
||||
\includegraphics[width=0.9\textwidth]{fig/EMJS_plot_noplanets}
|
||||
\caption{Another depiction of the EMJS trajectory, without the planetary ephemeris
|
||||
arcs}
|
||||
\label{emjs_nop}
|
||||
@@ -1533,6 +1548,21 @@
|
||||
beginning of the phase, very similarly to the previous result. In this trajectory, the
|
||||
Jupiter flyby occurs late July of 2029.
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{fig/EMJS_thrust_mag}
|
||||
\caption{The magnitude of the unit thrust vector over time for the EMJS trajectory}
|
||||
\label{emjs_mag}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{fig/EMJS_thrust_components}
|
||||
\caption{The inertial x, y, and z components of the unit thrust vector over time for
|
||||
the EMJS trajectory}
|
||||
\label{emjs_components}
|
||||
\end{figure}
|
||||
|
||||
Finally, this mission also has a third phase. The Jupiter flyby provides quite a strong
|
||||
$\Delta V$ for the spacecraft, allowing the following phase to largely be a coasting arc
|
||||
to Saturn almost one revolution later. Because of this long coasting period, the mission
|
||||
@@ -1556,7 +1586,7 @@
|
||||
of which are possible for the other result, meaning that either different launch
|
||||
vehicles must be found or mission specifications must change.
|
||||
|
||||
\begin{figure}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{fig/c3}
|
||||
\caption{Plot of Delta IV and Atlas V launch vehicle capabilities as they relate to
|
||||
|
||||
Reference in New Issue
Block a user