Built the population member gen function

This commit is contained in:
Connor
2021-09-22 22:21:00 -06:00
parent eaae54ac59
commit 80e352059e
7 changed files with 147 additions and 63 deletions

View File

@@ -20,5 +20,6 @@ module Thesis
include("./inner_loop/monotonic_basin_hopping.jl")
include("./inner_loop/phase.jl")
include("./inner_loop/inner_loop.jl")
include("./outer_loop.jl")
end

View File

@@ -47,9 +47,9 @@ function inner_loop(launch_date::DateTime,
thrust_profiles = []
for phase in phases
planet1_state = [spkssb(ids[phase.from_planet], time, "J2000"); 0.0]
planet1_state = [spkssb(ids[phase.from_planet], time, "ECLIPJ2000"); 0.0]
time += phase.time_of_flight
planet2_state = [spkssb(ids[phase.to_planet], time, "J2000"); 0.0]
planet2_state = [spkssb(ids[phase.to_planet], time, "ECLIPJ2000"); 0.0]
start = planet1_state + [0., 0., 0., phase.v∞_outgoing..., start_mass]
final = planet2_state + [0., 0., 0., phase.v∞_incoming..., start_mass]
println(start)

63
julia/src/outer_loop.jl Normal file
View File

@@ -0,0 +1,63 @@
using Random, Dates
export gen_decision_vector
"""
Returns a random date between two dates
"""
function gen_date(date_range::Vector{DateTime})
l0, lf = date_range
l0 + Dates.Millisecond(floor(rand()*(lf-l0).value))
end
"""
Returns a random amount of time in a range
"""
function gen_period(date_range::Vector{DateTime})
l0, lf = date_range
Dates.Millisecond(floor(rand()*(lf-l0).value))
end
"""
So ideally, this should generate a nice random decision vector, given the constraints.
Everything that you need to produce a vector of phases
Start with an empty vector of the right size
You need:
- launch_date
- 3 components v∞_out for Earth
- and then up to four flybys which contain:
- a planet
- three components v∞_in
- turning angle (in ecliptic)
- tof to planet
and finally, the ending planet is held fixed
"""
function gen_decision_vector(launch_range::Vector{DateTime},
target::String,
arrival_deadline::DateTime)
phases = Vector{Phase}()
launch_date = gen_date(launch_range)
v∞_out = 20rand(Float64,3) .- 10.
# Generate the planets (or null flybys)
planets = [ ["Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune"];
repeat(["None"],8) ] # Just as likely to get a planet as no flyby
long_flybys = [ "Earth"; filter(x -> x != "None", rand(planets, 4)); target ]
# This will cut the flybys off if the target shows up early
flybys = long_flybys[1:findfirst(x->x==target, long_flybys)]
time = launch_date
for i in 1:length(flybys)-1
v∞_in = 20rand(Float64,3) .- 10. # Generate the v∞_in components
tof = gen_period([time,arrival_deadline])
time += tof
push!(phases,Phase(flybys[i],flybys[i+1], tof.value/1000, v∞_out, v∞_in))
v∞_out_base = rand(Float64,3) .- 0.5
v∞_out = norm(v∞_in) * v∞_out_base/norm(v∞_out_base)
end
return phases
end

View File

@@ -22,9 +22,9 @@
phase2 = Phase(p1, p2, leg2_tof, v∞s[3], v∞s[4])
# For finding the best trajectories
earth_state = [spkssb(Thesis.ids["Earth"], launch_j2000, "J2000"); start_mass]
p1_state = [spkssb(Thesis.ids[p1], launch_j2000+leg1_tof, "J2000"); start_mass]
p2_state = [spkssb(Thesis.ids[p2], launch_j2000+leg1_tof+leg2_tof, "J2000"); start_mass]
earth_state = [spkssb(Thesis.ids["Earth"], launch_j2000, "ECLIPJ2000"); start_mass]
p1_state = [spkssb(Thesis.ids[p1], launch_j2000+leg1_tof, "ECLIPJ2000"); start_mass]
p2_state = [spkssb(Thesis.ids[p2], launch_j2000+leg1_tof+leg2_tof, "ECLIPJ2000"); start_mass]
earth = prop(zeros(100,3), earth_state, sc, μs["Sun"], 3600*24*365.)[1]
p1_path = prop(zeros(100,3), p1_state, sc, μs["Sun"], 3600*24*365*2.)[1]
p2_path = prop(zeros(100,3), p2_state, sc, μs["Sun"], 3600*24*365*8.)[1]

View File

@@ -5,76 +5,78 @@
println("Testing Monotonic Basin Hopper")
# Initial Setup
sc = Sc("test")
a = rand(50_000:1.:100_000)
e = rand(0.01:0.01:0.5)
i = rand(0.01:0.01:π/6)
T = 2π*(a^3/μs["Earth"])
prop_time = 0.5T
n = 20
start_mass = 10_000.
# sc = Sc("test")
# a = rand(50_000:1.:100_000)
# e = rand(0.01:0.01:0.5)
# i = rand(0.01:0.01:π/6)
# T = 2π*√(a^3/μs["Earth"])
# prop_time = 0.5T
# n = 20
# start_mass = 10_000.
# A simple orbit raising
start = [oe_to_xyz([ a, e, i, 0., 0., 0. ], μs["Earth"]); start_mass]
Tx, Ty, Tz = conv_T(repeat([0.8], n), repeat([0.], n), repeat([0.], n),
start,
sc,
prop_time,
μs["Earth"])
nominal_path, final = prop(hcat(Tx, Ty, Tz), start, sc, μs["Earth"], prop_time)
new_T = 2π*(xyz_to_oe(final, μs["Earth"])[1]^3/μs["Earth"])
# # A simple orbit raising
# start = [oe_to_xyz([ a, e, i, 0., 0., 0. ], μs["Earth"]); start_mass]
# Tx, Ty, Tz = conv_T(repeat([0.8], n), repeat([0.], n), repeat([0.], n),
# start,
# sc,
# prop_time,
# μs["Earth"])
# nominal_path, final = prop(hcat(Tx, Ty, Tz), start, sc, μs["Earth"], prop_time)
# new_T = 2π*√(xyz_to_oe(final, μs["Earth"])[1]^3/μs["Earth"])
# Find the best solution
best, archive = mbh(start,
final,
sc,
μs["Earth"],
0.0,
prop_time,
n,
search_patience_lim=25,
drill_patience_lim=50,
verbose=true)
# # Find the best solution
# best, archive = mbh(start,
# final,
# sc,
# μs["Earth"],
# 0.0,
# prop_time,
# n,
# search_patience_lim=25,
# drill_patience_lim=50,
# verbose=true)
# Test and plot
@test best.converged
transit, calc_final = prop(best.zero, start, sc, μs["Earth"], prop_time)
initial_path = prop(zeros((100,3)), start, sc, μs["Earth"], T)[1]
after_transit = prop(zeros((100,3)), calc_final, sc, μs["Earth"], new_T)[1]
final_path = prop(zeros((100,3)), final, sc, μs["Earth"], new_T)[1]
savefig(plot_orbits([initial_path, nominal_path, final_path],
labels=["initial", "nominal transit", "final"],
colors=["#FF4444","#44FF44","#4444FF"]),
"../plots/mbh_nominal.html")
savefig(plot_orbits([initial_path, transit, after_transit, final_path],
labels=["initial", "transit", "after transit", "final"],
colors=["#FFFFFF", "#FF4444","#44FF44","#4444FF"]),
"../plots/mbh_best.html")
i = 0
best_mass = calc_final[end]
nominal_mass = final[end]
masses = []
for candidate in archive
@test candidate.converged
path2, calc_final = prop(candidate.zero, start, sc, μs["Earth"], prop_time)
push!(masses, calc_final[end])
@test norm(calc_final[1:6] - final[1:6]) < 1e-4
end
@test best_mass == maximum(masses)
# # Test and plot
# @test best.converged
# transit, calc_final = prop(best.zero, start, sc, μs["Earth"], prop_time)
# initial_path = prop(zeros((100,3)), start, sc, μs["Earth"], T)[1]
# after_transit = prop(zeros((100,3)), calc_final, sc, μs["Earth"], new_T)[1]
# final_path = prop(zeros((100,3)), final, sc, μs["Earth"], new_T)[1]
# savefig(plot_orbits([initial_path, nominal_path, final_path],
# labels=["initial", "nominal transit", "final"],
# colors=["#FF4444","#44FF44","#4444FF"]),
# "../plots/mbh_nominal.html")
# savefig(plot_orbits([initial_path, transit, after_transit, final_path],
# labels=["initial", "transit", "after transit", "final"],
# colors=["#FFFFFF", "#FF4444","#44FF44","#4444FF"]),
# "../plots/mbh_best.html")
# i = 0
# best_mass = calc_final[end]
# nominal_mass = final[end]
# masses = []
# for candidate in archive
# @test candidate.converged
# path2, calc_final = prop(candidate.zero, start, sc, μs["Earth"], prop_time)
# push!(masses, calc_final[end])
# @test norm(calc_final[1:6] - final[1:6]) < 1e-4
# end
# @test best_mass == maximum(masses)
# This won't always work since the test is reduced in fidelity,
# but hopefully will usually work:
@test (start_mass - best_mass) < 1.1 * (start_mass - nominal_mass)
# # This won't always work since the test is reduced in fidelity,
# # but hopefully will usually work:
# @test (start_mass - best_mass) < 1.1 * (start_mass - nominal_mass)
# Now let's test a sun case. This should be pretty close to begin with
start_mass = 10_000.
launch_date = DateTime(2016,3,28)
launch_j2000 = utc2et(Dates.format(launch_date,"yyyy-mm-ddTHH:MM:SS"))
earth_start = [spkssb(ids["Earth"], launch_j2000, "J2000"); 1e5]
earth_start = [spkssb(ids["Earth"], launch_j2000, "ECLIPJ2000"); start_mass]
earth_speed = earth_start[4:6]
v∞ = 3.0*earth_speed/norm(earth_speed)
start = earth_start + [zeros(3); v∞; 0.0]
final = [1.62914115303947e8, 1.33709639408102e8, 5.690490452749867e7, -16.298522963602757, 15.193294491415365, 6.154820267250081, 1.0001e8]
tof = 3600*24*30*10.75
mars_state = [spkssb(Thesis.ids["Mars"], launch_j2000+tof, "ECLIPJ2000"); start_mass]
final = mars_state + [ zeros(3); [-1.1, -3., -2.6]; 0.0 ]
a = xyz_to_oe(final, μs["Sun"])[1]
T = 2π*(a^3/μs["Sun"])
n = 20

17
julia/test/outer_loop.jl Normal file
View File

@@ -0,0 +1,17 @@
@testset "Outer Loop" begin
using Dates
println("Testing Genetic Algorithm")
launch_range = [ DateTime(2016,3,28), DateTime(2019,3,28) ]
target = "Saturn"
deadline = DateTime(2028,12,31)
# First let's just test that we can generate a member of the population
member = gen_decision_vector(launch_range, target, deadline)
println(member)
@test typeof(member) == Vector{Phase}
end

View File

@@ -21,6 +21,7 @@ end
include("inner_loop/find_closest.jl")
include("inner_loop/monotonic_basin_hopping.jl")
include("inner_loop/inner_loop.jl")
include("outer_loop.jl")
end
print()