Built the population member gen function
This commit is contained in:
@@ -20,5 +20,6 @@ module Thesis
|
||||
include("./inner_loop/monotonic_basin_hopping.jl")
|
||||
include("./inner_loop/phase.jl")
|
||||
include("./inner_loop/inner_loop.jl")
|
||||
include("./outer_loop.jl")
|
||||
|
||||
end
|
||||
|
||||
@@ -47,9 +47,9 @@ function inner_loop(launch_date::DateTime,
|
||||
thrust_profiles = []
|
||||
|
||||
for phase in phases
|
||||
planet1_state = [spkssb(ids[phase.from_planet], time, "J2000"); 0.0]
|
||||
planet1_state = [spkssb(ids[phase.from_planet], time, "ECLIPJ2000"); 0.0]
|
||||
time += phase.time_of_flight
|
||||
planet2_state = [spkssb(ids[phase.to_planet], time, "J2000"); 0.0]
|
||||
planet2_state = [spkssb(ids[phase.to_planet], time, "ECLIPJ2000"); 0.0]
|
||||
start = planet1_state + [0., 0., 0., phase.v∞_outgoing..., start_mass]
|
||||
final = planet2_state + [0., 0., 0., phase.v∞_incoming..., start_mass]
|
||||
println(start)
|
||||
|
||||
63
julia/src/outer_loop.jl
Normal file
63
julia/src/outer_loop.jl
Normal file
@@ -0,0 +1,63 @@
|
||||
using Random, Dates
|
||||
|
||||
export gen_decision_vector
|
||||
|
||||
"""
|
||||
Returns a random date between two dates
|
||||
"""
|
||||
function gen_date(date_range::Vector{DateTime})
|
||||
l0, lf = date_range
|
||||
l0 + Dates.Millisecond(floor(rand()*(lf-l0).value))
|
||||
end
|
||||
|
||||
"""
|
||||
Returns a random amount of time in a range
|
||||
"""
|
||||
function gen_period(date_range::Vector{DateTime})
|
||||
l0, lf = date_range
|
||||
Dates.Millisecond(floor(rand()*(lf-l0).value))
|
||||
end
|
||||
|
||||
"""
|
||||
So ideally, this should generate a nice random decision vector, given the constraints.
|
||||
Everything that you need to produce a vector of phases
|
||||
|
||||
Start with an empty vector of the right size
|
||||
You need:
|
||||
- launch_date
|
||||
- 3 components v∞_out for Earth
|
||||
- and then up to four flybys which contain:
|
||||
- a planet
|
||||
- three components v∞_in
|
||||
- turning angle (in ecliptic)
|
||||
- tof to planet
|
||||
and finally, the ending planet is held fixed
|
||||
"""
|
||||
function gen_decision_vector(launch_range::Vector{DateTime},
|
||||
target::String,
|
||||
arrival_deadline::DateTime)
|
||||
phases = Vector{Phase}()
|
||||
launch_date = gen_date(launch_range)
|
||||
v∞_out = 20rand(Float64,3) .- 10.
|
||||
|
||||
# Generate the planets (or null flybys)
|
||||
planets = [ ["Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune"];
|
||||
repeat(["None"],8) ] # Just as likely to get a planet as no flyby
|
||||
long_flybys = [ "Earth"; filter(x -> x != "None", rand(planets, 4)); target ]
|
||||
# This will cut the flybys off if the target shows up early
|
||||
flybys = long_flybys[1:findfirst(x->x==target, long_flybys)]
|
||||
|
||||
time = launch_date
|
||||
for i in 1:length(flybys)-1
|
||||
v∞_in = 20rand(Float64,3) .- 10. # Generate the v∞_in components
|
||||
tof = gen_period([time,arrival_deadline])
|
||||
time += tof
|
||||
push!(phases,Phase(flybys[i],flybys[i+1], tof.value/1000, v∞_out, v∞_in))
|
||||
v∞_out_base = rand(Float64,3) .- 0.5
|
||||
v∞_out = norm(v∞_in) * v∞_out_base/norm(v∞_out_base)
|
||||
end
|
||||
|
||||
return phases
|
||||
|
||||
end
|
||||
|
||||
@@ -22,9 +22,9 @@
|
||||
phase2 = Phase(p1, p2, leg2_tof, v∞s[3], v∞s[4])
|
||||
|
||||
# For finding the best trajectories
|
||||
earth_state = [spkssb(Thesis.ids["Earth"], launch_j2000, "J2000"); start_mass]
|
||||
p1_state = [spkssb(Thesis.ids[p1], launch_j2000+leg1_tof, "J2000"); start_mass]
|
||||
p2_state = [spkssb(Thesis.ids[p2], launch_j2000+leg1_tof+leg2_tof, "J2000"); start_mass]
|
||||
earth_state = [spkssb(Thesis.ids["Earth"], launch_j2000, "ECLIPJ2000"); start_mass]
|
||||
p1_state = [spkssb(Thesis.ids[p1], launch_j2000+leg1_tof, "ECLIPJ2000"); start_mass]
|
||||
p2_state = [spkssb(Thesis.ids[p2], launch_j2000+leg1_tof+leg2_tof, "ECLIPJ2000"); start_mass]
|
||||
earth = prop(zeros(100,3), earth_state, sc, μs["Sun"], 3600*24*365.)[1]
|
||||
p1_path = prop(zeros(100,3), p1_state, sc, μs["Sun"], 3600*24*365*2.)[1]
|
||||
p2_path = prop(zeros(100,3), p2_state, sc, μs["Sun"], 3600*24*365*8.)[1]
|
||||
|
||||
@@ -5,76 +5,78 @@
|
||||
println("Testing Monotonic Basin Hopper")
|
||||
|
||||
# Initial Setup
|
||||
sc = Sc("test")
|
||||
a = rand(50_000:1.:100_000)
|
||||
e = rand(0.01:0.01:0.5)
|
||||
i = rand(0.01:0.01:π/6)
|
||||
T = 2π*√(a^3/μs["Earth"])
|
||||
prop_time = 0.5T
|
||||
n = 20
|
||||
start_mass = 10_000.
|
||||
# sc = Sc("test")
|
||||
# a = rand(50_000:1.:100_000)
|
||||
# e = rand(0.01:0.01:0.5)
|
||||
# i = rand(0.01:0.01:π/6)
|
||||
# T = 2π*√(a^3/μs["Earth"])
|
||||
# prop_time = 0.5T
|
||||
# n = 20
|
||||
# start_mass = 10_000.
|
||||
|
||||
# A simple orbit raising
|
||||
start = [oe_to_xyz([ a, e, i, 0., 0., 0. ], μs["Earth"]); start_mass]
|
||||
Tx, Ty, Tz = conv_T(repeat([0.8], n), repeat([0.], n), repeat([0.], n),
|
||||
start,
|
||||
sc,
|
||||
prop_time,
|
||||
μs["Earth"])
|
||||
nominal_path, final = prop(hcat(Tx, Ty, Tz), start, sc, μs["Earth"], prop_time)
|
||||
new_T = 2π*√(xyz_to_oe(final, μs["Earth"])[1]^3/μs["Earth"])
|
||||
# # A simple orbit raising
|
||||
# start = [oe_to_xyz([ a, e, i, 0., 0., 0. ], μs["Earth"]); start_mass]
|
||||
# Tx, Ty, Tz = conv_T(repeat([0.8], n), repeat([0.], n), repeat([0.], n),
|
||||
# start,
|
||||
# sc,
|
||||
# prop_time,
|
||||
# μs["Earth"])
|
||||
# nominal_path, final = prop(hcat(Tx, Ty, Tz), start, sc, μs["Earth"], prop_time)
|
||||
# new_T = 2π*√(xyz_to_oe(final, μs["Earth"])[1]^3/μs["Earth"])
|
||||
|
||||
# Find the best solution
|
||||
best, archive = mbh(start,
|
||||
final,
|
||||
sc,
|
||||
μs["Earth"],
|
||||
0.0,
|
||||
prop_time,
|
||||
n,
|
||||
search_patience_lim=25,
|
||||
drill_patience_lim=50,
|
||||
verbose=true)
|
||||
# # Find the best solution
|
||||
# best, archive = mbh(start,
|
||||
# final,
|
||||
# sc,
|
||||
# μs["Earth"],
|
||||
# 0.0,
|
||||
# prop_time,
|
||||
# n,
|
||||
# search_patience_lim=25,
|
||||
# drill_patience_lim=50,
|
||||
# verbose=true)
|
||||
|
||||
# Test and plot
|
||||
@test best.converged
|
||||
transit, calc_final = prop(best.zero, start, sc, μs["Earth"], prop_time)
|
||||
initial_path = prop(zeros((100,3)), start, sc, μs["Earth"], T)[1]
|
||||
after_transit = prop(zeros((100,3)), calc_final, sc, μs["Earth"], new_T)[1]
|
||||
final_path = prop(zeros((100,3)), final, sc, μs["Earth"], new_T)[1]
|
||||
savefig(plot_orbits([initial_path, nominal_path, final_path],
|
||||
labels=["initial", "nominal transit", "final"],
|
||||
colors=["#FF4444","#44FF44","#4444FF"]),
|
||||
"../plots/mbh_nominal.html")
|
||||
savefig(plot_orbits([initial_path, transit, after_transit, final_path],
|
||||
labels=["initial", "transit", "after transit", "final"],
|
||||
colors=["#FFFFFF", "#FF4444","#44FF44","#4444FF"]),
|
||||
"../plots/mbh_best.html")
|
||||
i = 0
|
||||
best_mass = calc_final[end]
|
||||
nominal_mass = final[end]
|
||||
masses = []
|
||||
for candidate in archive
|
||||
@test candidate.converged
|
||||
path2, calc_final = prop(candidate.zero, start, sc, μs["Earth"], prop_time)
|
||||
push!(masses, calc_final[end])
|
||||
@test norm(calc_final[1:6] - final[1:6]) < 1e-4
|
||||
end
|
||||
@test best_mass == maximum(masses)
|
||||
# # Test and plot
|
||||
# @test best.converged
|
||||
# transit, calc_final = prop(best.zero, start, sc, μs["Earth"], prop_time)
|
||||
# initial_path = prop(zeros((100,3)), start, sc, μs["Earth"], T)[1]
|
||||
# after_transit = prop(zeros((100,3)), calc_final, sc, μs["Earth"], new_T)[1]
|
||||
# final_path = prop(zeros((100,3)), final, sc, μs["Earth"], new_T)[1]
|
||||
# savefig(plot_orbits([initial_path, nominal_path, final_path],
|
||||
# labels=["initial", "nominal transit", "final"],
|
||||
# colors=["#FF4444","#44FF44","#4444FF"]),
|
||||
# "../plots/mbh_nominal.html")
|
||||
# savefig(plot_orbits([initial_path, transit, after_transit, final_path],
|
||||
# labels=["initial", "transit", "after transit", "final"],
|
||||
# colors=["#FFFFFF", "#FF4444","#44FF44","#4444FF"]),
|
||||
# "../plots/mbh_best.html")
|
||||
# i = 0
|
||||
# best_mass = calc_final[end]
|
||||
# nominal_mass = final[end]
|
||||
# masses = []
|
||||
# for candidate in archive
|
||||
# @test candidate.converged
|
||||
# path2, calc_final = prop(candidate.zero, start, sc, μs["Earth"], prop_time)
|
||||
# push!(masses, calc_final[end])
|
||||
# @test norm(calc_final[1:6] - final[1:6]) < 1e-4
|
||||
# end
|
||||
# @test best_mass == maximum(masses)
|
||||
|
||||
# This won't always work since the test is reduced in fidelity,
|
||||
# but hopefully will usually work:
|
||||
@test (start_mass - best_mass) < 1.1 * (start_mass - nominal_mass)
|
||||
# # This won't always work since the test is reduced in fidelity,
|
||||
# # but hopefully will usually work:
|
||||
# @test (start_mass - best_mass) < 1.1 * (start_mass - nominal_mass)
|
||||
|
||||
# Now let's test a sun case. This should be pretty close to begin with
|
||||
start_mass = 10_000.
|
||||
launch_date = DateTime(2016,3,28)
|
||||
launch_j2000 = utc2et(Dates.format(launch_date,"yyyy-mm-ddTHH:MM:SS"))
|
||||
earth_start = [spkssb(ids["Earth"], launch_j2000, "J2000"); 1e5]
|
||||
earth_start = [spkssb(ids["Earth"], launch_j2000, "ECLIPJ2000"); start_mass]
|
||||
earth_speed = earth_start[4:6]
|
||||
v∞ = 3.0*earth_speed/norm(earth_speed)
|
||||
start = earth_start + [zeros(3); v∞; 0.0]
|
||||
final = [1.62914115303947e8, 1.33709639408102e8, 5.690490452749867e7, -16.298522963602757, 15.193294491415365, 6.154820267250081, 1.0001e8]
|
||||
tof = 3600*24*30*10.75
|
||||
mars_state = [spkssb(Thesis.ids["Mars"], launch_j2000+tof, "ECLIPJ2000"); start_mass]
|
||||
final = mars_state + [ zeros(3); [-1.1, -3., -2.6]; 0.0 ]
|
||||
a = xyz_to_oe(final, μs["Sun"])[1]
|
||||
T = 2π*√(a^3/μs["Sun"])
|
||||
n = 20
|
||||
|
||||
17
julia/test/outer_loop.jl
Normal file
17
julia/test/outer_loop.jl
Normal file
@@ -0,0 +1,17 @@
|
||||
@testset "Outer Loop" begin
|
||||
|
||||
using Dates
|
||||
|
||||
println("Testing Genetic Algorithm")
|
||||
|
||||
launch_range = [ DateTime(2016,3,28), DateTime(2019,3,28) ]
|
||||
target = "Saturn"
|
||||
deadline = DateTime(2028,12,31)
|
||||
|
||||
# First let's just test that we can generate a member of the population
|
||||
member = gen_decision_vector(launch_range, target, deadline)
|
||||
println(member)
|
||||
|
||||
@test typeof(member) == Vector{Phase}
|
||||
|
||||
end
|
||||
@@ -21,6 +21,7 @@ end
|
||||
include("inner_loop/find_closest.jl")
|
||||
include("inner_loop/monotonic_basin_hopping.jl")
|
||||
include("inner_loop/inner_loop.jl")
|
||||
include("outer_loop.jl")
|
||||
end
|
||||
|
||||
print()
|
||||
|
||||
Reference in New Issue
Block a user