Monotonic Basin Hopping is started
This commit is contained in:
@@ -9,4 +9,5 @@ module Thesis
|
||||
include("./laguerre-conway.jl")
|
||||
include("./propagator.jl")
|
||||
include("./find_closest.jl")
|
||||
include("./monotonic_basin_hopping.jl")
|
||||
end
|
||||
@@ -1,18 +1,20 @@
|
||||
using NLsolve
|
||||
|
||||
export nlp_solve
|
||||
|
||||
function treat_inputs(x::AbstractVector)
|
||||
n::Int = length(x)/3
|
||||
reshape(x,(3,n))'
|
||||
end
|
||||
|
||||
function single_shoot(start::Vector{Float64},
|
||||
final::Vector{Float64},
|
||||
craft::Sc,
|
||||
μ::Float64,
|
||||
t0::Float64,
|
||||
tf::Float64,
|
||||
x0::AbstractVector,
|
||||
tol=1e-6)
|
||||
function nlp_solve(start::Vector{Float64},
|
||||
final::Vector{Float64},
|
||||
craft::Sc,
|
||||
μ::Float64,
|
||||
t0::Float64,
|
||||
tf::Float64,
|
||||
x0::AbstractVector;
|
||||
tol=1e-6)
|
||||
|
||||
n::Int = length(x0)/3
|
||||
function f!(F,x)
|
||||
@@ -20,6 +22,6 @@ function single_shoot(start::Vector{Float64},
|
||||
F[7:3n] .= 0.
|
||||
end
|
||||
|
||||
return nlsolve(f!, x0, ftol=tol, autodiff=:forward, iterations=10_000)
|
||||
return nlsolve(f!, x0, ftol=tol, autodiff=:forward, iterations=1_000)
|
||||
|
||||
end
|
||||
56
julia/src/monotonic_basin_hopping.jl
Normal file
56
julia/src/monotonic_basin_hopping.jl
Normal file
@@ -0,0 +1,56 @@
|
||||
function perturb(x::AbstractVector, n::Int)
|
||||
perturb_vector = 0.02 * rand(Float64, (3n)) .- 0.01
|
||||
return x + perturb_vector
|
||||
end
|
||||
|
||||
function mass_better(x_star::AbstractVector,
|
||||
x_current::AbstractVector,
|
||||
start::AbstractVector,
|
||||
final::AbstractVector,
|
||||
craft::Sc,
|
||||
μ::AbstractFloat,
|
||||
t0::AbstractFloat,
|
||||
tf::AbstractFloat)
|
||||
mass_star = prop(treat_inputs(x_star), start, craft, μ, tf-t0)[2]
|
||||
mass_current = prop(treat_inputs(x_current), start, craft, μ, tf-t0)[2]
|
||||
return mass_star > mass_current
|
||||
end
|
||||
|
||||
function mbh(start::AbstractVector,
|
||||
final::AbstractVector,
|
||||
craft::Sc,
|
||||
μ::AbstractFloat,
|
||||
t0::AbstractFloat,
|
||||
tf::AbstractFloat,
|
||||
n::Int,
|
||||
num_iters::Int=10,
|
||||
tol=1e-6)
|
||||
i::Int = 0
|
||||
archive = []
|
||||
x_star = nlp_solve(start, final, craft, μ, t0, tf, rand(Float64,(3n)), tol=tol)
|
||||
while converged(x_star) == false
|
||||
x_star = nlp_solve(start, final, craft, μ, t0, tf, rand(Float64,(3n)), tol=tol)
|
||||
end
|
||||
|
||||
x_current = x_star
|
||||
push!(archive, x_current)
|
||||
|
||||
while i < num_iters
|
||||
x_star = nlp_solve(start, final, craft, μ, t0, tf, perturb(x_current.zero,n), tol=tol)
|
||||
if converged(x_star) && mass_better(x_star.zero, x_current.zero, start, final, craft, μ, t0, tf)
|
||||
x_current = x_star
|
||||
push!(archive, x_star)
|
||||
else
|
||||
while converged(x_star) == false
|
||||
x_star = nlp_solve(start, final, craft, μ, t0, tf, rand(Float64,(3n)), tol=tol)
|
||||
end
|
||||
if mass_better(x_star.zero, x_current.zero, start, final, craft, μ, t0, tf)
|
||||
x_current = x_star
|
||||
push!(archive, x_star)
|
||||
end
|
||||
end
|
||||
i += 1
|
||||
end
|
||||
|
||||
return x_current, archive
|
||||
end
|
||||
Reference in New Issue
Block a user