Monotonic Basin Hopping is started

This commit is contained in:
Connor
2021-08-25 23:41:44 -06:00
parent db883187a1
commit 850f05ce38
7 changed files with 107 additions and 13 deletions

View File

@@ -9,3 +9,8 @@ unit-test-job:
- apt-get install -y unzip - apt-get install -y unzip
- mkdir julia/plots - mkdir julia/plots
- julia --project=julia/Project.toml -E 'using Pkg; Pkg.test()' - julia --project=julia/Project.toml -E 'using Pkg; Pkg.test()'
artifacts:
paths:
- plots/plot_test.html
- plots/find_closest_test.html
expire_in: 1 week

View File

@@ -9,4 +9,5 @@ module Thesis
include("./laguerre-conway.jl") include("./laguerre-conway.jl")
include("./propagator.jl") include("./propagator.jl")
include("./find_closest.jl") include("./find_closest.jl")
include("./monotonic_basin_hopping.jl")
end end

View File

@@ -1,17 +1,19 @@
using NLsolve using NLsolve
export nlp_solve
function treat_inputs(x::AbstractVector) function treat_inputs(x::AbstractVector)
n::Int = length(x)/3 n::Int = length(x)/3
reshape(x,(3,n))' reshape(x,(3,n))'
end end
function single_shoot(start::Vector{Float64}, function nlp_solve(start::Vector{Float64},
final::Vector{Float64}, final::Vector{Float64},
craft::Sc, craft::Sc,
μ::Float64, μ::Float64,
t0::Float64, t0::Float64,
tf::Float64, tf::Float64,
x0::AbstractVector, x0::AbstractVector;
tol=1e-6) tol=1e-6)
n::Int = length(x0)/3 n::Int = length(x0)/3
@@ -20,6 +22,6 @@ function single_shoot(start::Vector{Float64},
F[7:3n] .= 0. F[7:3n] .= 0.
end end
return nlsolve(f!, x0, ftol=tol, autodiff=:forward, iterations=10_000) return nlsolve(f!, x0, ftol=tol, autodiff=:forward, iterations=1_000)
end end

View File

@@ -0,0 +1,56 @@
function perturb(x::AbstractVector, n::Int)
perturb_vector = 0.02 * rand(Float64, (3n)) .- 0.01
return x + perturb_vector
end
function mass_better(x_star::AbstractVector,
x_current::AbstractVector,
start::AbstractVector,
final::AbstractVector,
craft::Sc,
μ::AbstractFloat,
t0::AbstractFloat,
tf::AbstractFloat)
mass_star = prop(treat_inputs(x_star), start, craft, μ, tf-t0)[2]
mass_current = prop(treat_inputs(x_current), start, craft, μ, tf-t0)[2]
return mass_star > mass_current
end
function mbh(start::AbstractVector,
final::AbstractVector,
craft::Sc,
μ::AbstractFloat,
t0::AbstractFloat,
tf::AbstractFloat,
n::Int,
num_iters::Int=10,
tol=1e-6)
i::Int = 0
archive = []
x_star = nlp_solve(start, final, craft, μ, t0, tf, rand(Float64,(3n)), tol=tol)
while converged(x_star) == false
x_star = nlp_solve(start, final, craft, μ, t0, tf, rand(Float64,(3n)), tol=tol)
end
x_current = x_star
push!(archive, x_current)
while i < num_iters
x_star = nlp_solve(start, final, craft, μ, t0, tf, perturb(x_current.zero,n), tol=tol)
if converged(x_star) && mass_better(x_star.zero, x_current.zero, start, final, craft, μ, t0, tf)
x_current = x_star
push!(archive, x_star)
else
while converged(x_star) == false
x_star = nlp_solve(start, final, craft, μ, t0, tf, rand(Float64,(3n)), tol=tol)
end
if mass_better(x_star.zero, x_current.zero, start, final, craft, μ, t0, tf)
x_current = x_star
push!(archive, x_star)
end
end
i += 1
end
return x_current, archive
end

View File

@@ -10,7 +10,7 @@
i = rand(0.01:0.01:π/6) i = rand(0.01:0.01:π/6)
T = 2π*(a^3/μs["Earth"]) T = 2π*(a^3/μs["Earth"])
prop_time = 2T prop_time = 2T
n = 50 n = 30
# A simple orbit raising # A simple orbit raising
start = oe_to_xyz([ a, e, i, 0., 0., 0. ], μs["Earth"]) start = oe_to_xyz([ a, e, i, 0., 0., 0. ], μs["Earth"])
@@ -19,8 +19,8 @@
new_T = 2π*(xyz_to_oe(final, μs["Earth"])[1]^3/μs["Earth"]) new_T = 2π*(xyz_to_oe(final, μs["Earth"])[1]^3/μs["Earth"])
# This should be close enough to 0.6 # This should be close enough to 0.6
x0 = repeat([0.59, 0., 0.], n) x0 = repeat([0.55, 0., 0.], n)
result = Thesis.single_shoot(start, final, sc, μs["Earth"], 0.0, prop_time, x0) result = nlp_solve(start, final, sc, μs["Earth"], 0.0, prop_time, x0)
# Test and plot # Test and plot
@test converged(result) @test converged(result)
@@ -29,7 +29,7 @@
path3 = prop(zeros((100,3)), path2[end,:], sc, μs["Earth"], new_T)[1] path3 = prop(zeros((100,3)), path2[end,:], sc, μs["Earth"], new_T)[1]
path4 = prop(zeros((100,3)), final, sc, μs["Earth"], new_T)[1] path4 = prop(zeros((100,3)), final, sc, μs["Earth"], new_T)[1]
savefig(plot_orbits([path1, path2, path3, path4], savefig(plot_orbits([path1, path2, path3, path4],
labels=["inital", "transit", "after transit", "final"], labels=["initial", "transit", "after transit", "final"],
colors=["#FFFFFF","#FF4444","#44FF44","#4444FF"]), colors=["#FFFFFF","#FF4444","#44FF44","#4444FF"]),
"../plots/find_closest_test.html") "../plots/find_closest_test.html")
if converged(result) if converged(result)

View File

@@ -0,0 +1,29 @@
@testset "Monotonic Basin Hopping" begin
using Thesis: mbh
# Initial Setup
sc = Sc("test")
a = rand(15000:1.:40000)
e = rand(0.01:0.01:0.5)
i = rand(0.01:0.01:π/6)
T = 2π*(a^3/μs["Earth"])
prop_time = 2T
n = 25
# A simple orbit raising
start = oe_to_xyz([ a, e, i, 0., 0., 0. ], μs["Earth"])
ΔVs = repeat([0.6, 0., 0.]', outer=(n,1))
final = prop(ΔVs, start, sc, μs["Earth"], prop_time)[1][end,:]
new_T = 2π*(xyz_to_oe(final, μs["Earth"])[1]^3/μs["Earth"])
# This should be close enough to 0.6
best, archive = mbh(start, final, sc, μs["Earth"], 0.0, prop_time, n)
# Test and plot
@test converged(best)
for path in archive
@test converged(path)
end
end

View File

@@ -11,6 +11,7 @@ using Thesis
include("propagator.jl") include("propagator.jl")
include("plotting.jl") include("plotting.jl")
include("find_closest.jl") include("find_closest.jl")
include("monotonic_basin_hopping.jl")
end end
print() print()