Currently working on refactor, much work to do
This commit is contained in:
@@ -1,25 +1,30 @@
|
||||
using SPICE
|
||||
|
||||
try
|
||||
furnsh("../../spice_files/naif0012.tls")
|
||||
furnsh("../../spice_files/de430.bsp")
|
||||
catch
|
||||
furnsh("spice_files/naif0012.tls")
|
||||
furnsh("spice_files/de430.bsp")
|
||||
end
|
||||
|
||||
module Thesis
|
||||
|
||||
using LinearAlgebra, ForwardDiff, PlotlyJS, SPICE, Distributed
|
||||
using LinearAlgebra
|
||||
using ForwardDiff
|
||||
using PlotlyJS
|
||||
using Distributed
|
||||
|
||||
try
|
||||
furnsh("../../SPICE/naif0012.tls")
|
||||
furnsh("../../SPICE/de430.bsp")
|
||||
catch
|
||||
furnsh("SPICE/naif0012.tls")
|
||||
furnsh("SPICE/de430.bsp")
|
||||
end
|
||||
|
||||
include("./errors.jl")
|
||||
include("./constants.jl")
|
||||
include("./spacecraft.jl")
|
||||
include("./conversions.jl")
|
||||
include("./plotting.jl")
|
||||
include("./inner_loop/laguerre-conway.jl")
|
||||
include("./inner_loop/propagator.jl")
|
||||
include("./inner_loop/find_closest.jl")
|
||||
include("./inner_loop/monotonic_basin_hopping.jl")
|
||||
include("./inner_loop/phase.jl")
|
||||
include("./inner_loop/inner_loop.jl")
|
||||
include("./outer_loop.jl")
|
||||
# include("./inner_loop/monotonic_basin_hopping.jl")
|
||||
# include("./outer_loop.jl")
|
||||
|
||||
end
|
||||
|
||||
@@ -2,113 +2,36 @@
|
||||
# DEFINING CONSTANTS
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
export μs, G, GMs, μ, rs, as, es, AU, ids
|
||||
export Body, Sun, Mercury, Venus, Earth, Moon, Mars
|
||||
export Jupiter, Saturn, Uranus, Neptune, Pluto
|
||||
export G, AU, init_STM, hour, day, year, second
|
||||
export Pathlist
|
||||
|
||||
# Gravitational Constants
|
||||
μs = Dict(
|
||||
"Sun" => 1.32712440018e11,
|
||||
"Mercury" => 2.2032e4,
|
||||
"Venus" => 3.257e5,
|
||||
"Earth" => 3.986004415e5,
|
||||
"Moon" => 4.902799e3,
|
||||
"Mars" => 4.305e4,
|
||||
"Jupiter" => 1.266865361e8,
|
||||
"Saturn" => 3.794e7,
|
||||
"Uranus" => 5.794e6,
|
||||
"Neptune" => 6.809e6,
|
||||
"Pluto" => 9e2)
|
||||
struct Body
|
||||
μ::Float64
|
||||
r::Float64 # radius
|
||||
color::String
|
||||
id::Int # SPICE id
|
||||
end
|
||||
|
||||
G = 6.67430e-20
|
||||
const Sun = Body(1.32712440018e11, 696000., "Electric", 10)
|
||||
const Mercury = Body(2.2032e4, 2439., "heat", 1)
|
||||
const Venus = Body(3.257e5, 6052., "turbid", 2)
|
||||
const Earth = Body(3.986004415e5, 6378.1363, "Blues", 399)
|
||||
const Moon = Body(4.902799e3, 1738., "Greys", 301)
|
||||
const Mars = Body(4.305e4, 3397.2, "Reds", 4)
|
||||
const Jupiter = Body(1.266865361e8, 71492., "solar", 5)
|
||||
const Saturn = Body(3.794e7, 60268., "turbid", 6)
|
||||
const Uranus = Body(5.794e6, 25559., "haline", 7)
|
||||
const Neptune = Body(6.809e6, 24764., "ice", 8)
|
||||
const Pluto = Body(9e2, 1151., "matter", 9)
|
||||
|
||||
function μ(m1::Float64, m2::Float64)
|
||||
return m2/(m1+m2)
|
||||
end
|
||||
const G = 6.67430e-20 #universal gravity parameter
|
||||
const AU = 149597870.691 #km
|
||||
const init_STM = vec(Matrix{Float64}(I,6,6))
|
||||
const second = 1.
|
||||
const hour = 3600.
|
||||
const day = 86400.
|
||||
const year = 365 * day
|
||||
|
||||
function μ(GM1::Float64, GM2::Float64, Grav::Float64)
|
||||
return μ(GM1/Grav, GM2/Grav)
|
||||
end
|
||||
|
||||
function μ(primary::String, secondary::String)
|
||||
return μ(GMs[primary]/G, GMs[secondary]/G)
|
||||
end
|
||||
|
||||
const GMs = Dict(
|
||||
"Sun" => 132712440041.93938,
|
||||
"Earth" => 398600.435436,
|
||||
"Moon" => 4902.800066)
|
||||
|
||||
# Radii
|
||||
const rs = Dict(
|
||||
"Sun" => 696000.,
|
||||
"Mercury" => 2439.,
|
||||
"Venus" => 6052.,
|
||||
"Earth" => 6378.1363,
|
||||
"Moon" => 1738.,
|
||||
"Mars" => 3397.2,
|
||||
"Jupiter" => 71492.,
|
||||
"Saturn" => 60268.,
|
||||
"Uranus" => 25559.,
|
||||
"Neptune" => 24764.,
|
||||
"Pluto" => 1151.)
|
||||
|
||||
# Semi Major Axes
|
||||
const as = Dict(
|
||||
"Mercury" => 57909083.,
|
||||
"Venus" => 108208601.,
|
||||
"Earth" => 149598023.,
|
||||
"Moon" => 384400.,
|
||||
"Mars" => 227939186.,
|
||||
"Jupiter" => 778298361.,
|
||||
"Saturn" => 1429394133.,
|
||||
"Uranus" => 2875038615.,
|
||||
"Neptune" => 4504449769.,
|
||||
"Pluto" => 5915799000.)
|
||||
|
||||
# Eccentricities
|
||||
const es = Dict(
|
||||
"Earth" => 0.016708617,
|
||||
"Moon" => 0.0549)
|
||||
|
||||
# J2 for basic oblateness
|
||||
const j2s = Dict(
|
||||
"Mercury" => 0.00006,
|
||||
"Venus" => 0.000027,
|
||||
"Earth" => 0.0010826269,
|
||||
"Moon" => 0.0002027,
|
||||
"Mars" => 0.001964,
|
||||
"Jupiter" => 0.01475,
|
||||
"Saturn" => 0.01645,
|
||||
"Uranus" => 0.012,
|
||||
"Neptune" => 0.004,
|
||||
"Pluto" => 0.)
|
||||
|
||||
# These are just the colors for plots
|
||||
const p_colors = Dict(
|
||||
"Sun" => "Electric",
|
||||
"Mercury" => "heat",
|
||||
"Venus" => "turbid",
|
||||
"Earth" => "Blues",
|
||||
"Moon" => "Greys",
|
||||
"Mars" => "Reds",
|
||||
"Jupiter" => "solar",
|
||||
"Saturn" => "turbid",
|
||||
"Uranus" => "haline",
|
||||
"Neptune" => "ice",
|
||||
"Pluto" => "matter")
|
||||
|
||||
const ids = Dict(
|
||||
"Sun" => 10,
|
||||
"Mercury" => 1,
|
||||
"Venus" => 2,
|
||||
"Earth" => 399,
|
||||
"Moon" => 301,
|
||||
"Mars" => 4,
|
||||
"Jupiter" => 5,
|
||||
"Saturn" => 6,
|
||||
"Uranus" => 7,
|
||||
"Neptune" => 8,
|
||||
"Pluto" => 9,
|
||||
)
|
||||
|
||||
const AU = 149597870.691 #km
|
||||
const init_STM = vec(Matrix{Float64}(I,6,6))
|
||||
Pathlist = Vector{Vector{Vector{Float64}}}
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
export oe_to_rθh, rθh_to_xyz, oe_to_xyz, xyz_to_oe, conv_T
|
||||
export oe_to_rθh, rθh_to_xyz, oe_to_xyz, xyz_to_oe, conv_T, spiral, gen_orbit
|
||||
|
||||
function oe_to_rθh(oe::Vector,μ::Real) :: Vector
|
||||
|
||||
@@ -69,6 +69,30 @@ function xyz_to_oe(cart_vec::Vector,μ::Real)
|
||||
|
||||
end
|
||||
|
||||
"""
|
||||
A convenience function for generating start conditions from orbital elements
|
||||
Inputs: a body, a period, and a mass
|
||||
Output: a random reasonable orbit
|
||||
"""
|
||||
function gen_orbit(T::Float64, mass::Float64, primary::Body=Sun)
|
||||
μ = primary.μ
|
||||
i = rand(0.0:0.01:0.4999π)
|
||||
θ = rand(0.0:0.01:2π)
|
||||
i = 0
|
||||
while true
|
||||
i += 1
|
||||
e = rand(0.0:0.01:0.5)
|
||||
a = ∛(μ * ( T/2π )^2 )
|
||||
a*(1-e) < 1.1primary.r || return [ oe_to_xyz([ a, e, i, 0., 0., θ ], μ); mass ]
|
||||
i < 100 || throw(GenOrbit_Error)
|
||||
end
|
||||
end
|
||||
|
||||
"""
|
||||
A convenience function for generating spiral trajectories
|
||||
"""
|
||||
spiral(mag,n,init,sc,time,primary=Sun) = conv_T(fill(mag, n), zeros(n), zeros(n), init, sc, time, primary)
|
||||
|
||||
"""
|
||||
Converts a series of thrust vectors from R,Θ,H frame to cartesian
|
||||
"""
|
||||
@@ -78,7 +102,7 @@ function conv_T(Tm::Vector{Float64},
|
||||
init_state::Vector{Float64},
|
||||
craft::Sc,
|
||||
time::Float64,
|
||||
μ::Float64)
|
||||
primary::Body=Sun)
|
||||
|
||||
Txs = Float64[]
|
||||
Tys = Float64[]
|
||||
@@ -100,7 +124,7 @@ function conv_T(Tm::Vector{Float64},
|
||||
for i in 1:n
|
||||
mag, α, β = Tm[i], Ta[i], Tb[i]
|
||||
thrust_rθh = mag * [cos(β)*sin(α), cos(β)*cos(α), sin(β)]
|
||||
_,_,i,Ω,ω,ν = xyz_to_oe(state, μ)
|
||||
_,_,i,Ω,ω,ν = xyz_to_oe(state, primary.μ)
|
||||
θ = ω+ν
|
||||
cΩ,sΩ,ci,si,cθ,sθ = cos(Ω),sin(Ω),cos(i),sin(i),cos(θ),sin(θ)
|
||||
DCM = [cΩ*cθ-sΩ*ci*sθ -cΩ*sθ-sΩ*ci*cθ sΩ*si;
|
||||
@@ -108,10 +132,10 @@ function conv_T(Tm::Vector{Float64},
|
||||
si*sθ si*cθ ci ]
|
||||
Tx, Ty, Tz = DCM*thrust_rθh
|
||||
|
||||
state = prop_one([Tx, Ty, Tz], state, copy(craft), μ, time/n)
|
||||
state = prop_one([Tx, Ty, Tz], state, craft, time/n, primary)
|
||||
push!(Txs, Tx)
|
||||
push!(Tys, Ty)
|
||||
push!(Tzs, Tz)
|
||||
end
|
||||
return Txs, Tys, Tzs
|
||||
return hcat(Txs, Tys, Tzs)
|
||||
end
|
||||
|
||||
16
julia/src/errors.jl
Normal file
16
julia/src/errors.jl
Normal file
@@ -0,0 +1,16 @@
|
||||
struct LaGuerreConway_Error <: Exception end
|
||||
|
||||
struct ΔVsize_Error <: Exception end
|
||||
|
||||
struct GenOrbit_Error <: Exception end
|
||||
Base.showerror(io::IO, e::GenOrbit_Error) = print(io, "Infinite Loop trying to generate the init orbit")
|
||||
|
||||
struct PropOne_Error <: Exception
|
||||
ΔV_unit::AbstractVector
|
||||
end
|
||||
Base.showerror(io::IO, e::PropOne_Error) = print(io, "tried to prop a unit ΔV of: ", e.ΔV_unit)
|
||||
|
||||
struct Mass_Error{T} <: Exception where T <: Real
|
||||
mass::T
|
||||
end
|
||||
Base.showerror(io::IO, e::Mass_Error) = print(io, "Mass (", e.mass, ") got too low in propagation")
|
||||
@@ -1,45 +0,0 @@
|
||||
using NLsolve
|
||||
|
||||
export nlp_solve, mass_est
|
||||
|
||||
function mass_est(T)
|
||||
ans = 0
|
||||
n = Int(length(T)/3)
|
||||
for i in 1:n ans += norm(T[i,:]) end
|
||||
return ans/n
|
||||
end
|
||||
|
||||
struct Result
|
||||
converged::Bool
|
||||
zero::Matrix{Float64}
|
||||
end
|
||||
|
||||
function nlp_solve(start::Vector{Float64},
|
||||
final::Vector{Float64},
|
||||
craft::Sc,
|
||||
μ::Float64,
|
||||
t0::Float64,
|
||||
tf::Float64,
|
||||
x0::Matrix{Float64};
|
||||
tol=1e-6,
|
||||
num_iters=1_000)
|
||||
|
||||
function f!(F,x)
|
||||
try
|
||||
F .= 0.0
|
||||
F[1:6, 1] .= prop(tanh.(x), start, copy(craft), μ, tf-t0)[2][1:6] .- final[1:6]
|
||||
catch e
|
||||
F .= 10000000.0
|
||||
end
|
||||
end
|
||||
|
||||
result = Result(false, zeros(size(x0)))
|
||||
try
|
||||
nl_results = nlsolve(f!, atanh.(x0), ftol=tol, autodiff=:forward, iterations=num_iters)
|
||||
result = Result(converged(nl_results), tanh.(nl_results.zero))
|
||||
catch e
|
||||
end
|
||||
|
||||
return result
|
||||
|
||||
end
|
||||
@@ -1,5 +1,6 @@
|
||||
function laguerre_conway(state::Vector{<:Real}, μ::Float64, time::Float64)
|
||||
function laguerre_conway(state::Vector{<:Real}, time::Float64, primary::Body=Sun)
|
||||
|
||||
μ = primary.μ
|
||||
n = 5 # Choose LaGuerre-Conway "n"
|
||||
i = 0
|
||||
|
||||
@@ -22,7 +23,7 @@ function laguerre_conway(state::Vector{<:Real}, μ::Float64, time::Float64)
|
||||
sign = dF >= 0 ? 1 : -1
|
||||
ΔE_new = ΔE - n*F / ( dF + sign * √(abs((n-1)^2*dF^2 - n*(n-1)*F*d2F )))
|
||||
i += 1
|
||||
if i > 100 throw(ErrorException("LaGuerre-Conway did not converge!")) end
|
||||
if i > 100 throw(LaGuerreConway_Error("LaGuerre-Conway did not converge!")) end
|
||||
end
|
||||
F = 1 - a/r0_mag * (1-cos(ΔE))
|
||||
G = a * σ0/ √(μ) * (1-cos(ΔE)) + r0_mag * √(a) / √(μ) * sin(ΔE)
|
||||
@@ -41,7 +42,7 @@ function laguerre_conway(state::Vector{<:Real}, μ::Float64, time::Float64)
|
||||
sign = dF >= 0 ? 1 : -1
|
||||
ΔH_new = ΔH - n*F / ( dF + sign * √(abs((n-1)^2*dF^2 - n*(n-1)*F*d2F )))
|
||||
i += 1
|
||||
if i > 100 throw(ErrorException("LaGuerre-Conway did not converge!")) end
|
||||
if i > 100 throw(LaGuerreConway_Error("LaGuerre-Conway did not converge!")) end
|
||||
end
|
||||
F = 1 - a/r0_mag * (1-cos(ΔH))
|
||||
G = a * σ0/ √(μ) * (1-cos(ΔH)) + r0_mag * √(-a) / √(μ) * sin(ΔH)
|
||||
|
||||
@@ -1,5 +1,8 @@
|
||||
export mbh
|
||||
|
||||
"""
|
||||
Generates n pareto-distributed random numbers
|
||||
"""
|
||||
function pareto(α::Float64, n::Int)
|
||||
s = rand((-1,1), (n,3))
|
||||
r = rand(Float64, (n,3))
|
||||
@@ -7,6 +10,10 @@ function pareto(α::Float64, n::Int)
|
||||
return (s./ϵ) * (α - 1.0) ./ (ϵ ./ (ϵ .+ r)).^(-α)
|
||||
end
|
||||
|
||||
"""
|
||||
Perturbs the monotonic basin hopping decision vector
|
||||
TODO: This needs to be updated
|
||||
"""
|
||||
function perturb(x::AbstractMatrix, n::Int)
|
||||
ans = x + pareto(1.01, n)
|
||||
map!(elem -> elem > 1.0 ? 1.0 : elem, ans, ans)
|
||||
@@ -14,11 +21,13 @@ function perturb(x::AbstractMatrix, n::Int)
|
||||
return ans
|
||||
end
|
||||
|
||||
|
||||
function new_x(n::Int)
|
||||
2.0 * rand(Float64, (n,3)) .- 1.
|
||||
end
|
||||
|
||||
function mbh(flybys::Vector{Planet})
|
||||
end
|
||||
|
||||
function mbh(start::AbstractVector,
|
||||
final::AbstractVector,
|
||||
craft::Sc,
|
||||
|
||||
@@ -1,9 +1,38 @@
|
||||
export Phase
|
||||
using NLsolve
|
||||
|
||||
export solve_phase
|
||||
|
||||
"""
|
||||
This function will take a single phase (so an initial state, and a final state) and an initial guess
|
||||
to the thrust profile and use an NLP solver to find the nearest thrust profile to that initial guess
|
||||
that satisfies the final state condition
|
||||
"""
|
||||
function solve_phase( start::Vector{Float64},
|
||||
final::Vector{Float64},
|
||||
craft::Sc,
|
||||
tof::Float64,
|
||||
x0::Matrix{Float64},
|
||||
primary::Body=Sun;
|
||||
tol=1e-6,
|
||||
num_iters=1_000 )
|
||||
|
||||
function f!(F,x)
|
||||
try
|
||||
F .= 0.0
|
||||
F[1:6, 1] .= prop(tanh.(x), start, craft, tof, primary)[2][1:6] .- final[1:6]
|
||||
catch e
|
||||
# If the error is due to something natural, just imply a penalty
|
||||
if isa(Mass_Error, e) || isa(PropOne_Error, e)
|
||||
F .= 10000000.0
|
||||
else
|
||||
rethrow()
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
result = nlsolve(f!, atanh.(x0), ftol=tol, autodiff=:forward, iterations=num_iters)
|
||||
result.zero = tanh.(result.zero)
|
||||
|
||||
return result
|
||||
|
||||
struct Phase
|
||||
from_planet::String
|
||||
to_planet::String
|
||||
time_of_flight::Float64 # seconds
|
||||
v∞_outgoing::Vector{Float64} # Km/s
|
||||
v∞_incoming::Vector{Float64} # Km/s
|
||||
end
|
||||
|
||||
@@ -18,18 +18,15 @@ A convenience function for using spacecraft. Note that this function outputs a s
|
||||
function prop_one(ΔV_unit::Vector{<:Real},
|
||||
state::Vector{<:Real},
|
||||
craft::Sc,
|
||||
μ::Float64,
|
||||
time::Float64)
|
||||
time::Float64,
|
||||
primary::Body=Sun)
|
||||
|
||||
for direction in ΔV_unit
|
||||
if abs(direction) > 1.0
|
||||
println(direction)
|
||||
error("ΔV is impossibly high")
|
||||
end
|
||||
abs(direction) <= 1.0 || throw(PropOne_Error(ΔV_unit))
|
||||
end
|
||||
ΔV = max_ΔV(craft.duty_cycle, craft.num_thrusters, craft.max_thrust, time, 0., state[7]) * ΔV_unit
|
||||
halfway = laguerre_conway(state, μ, time/2) + [zeros(3); ΔV]
|
||||
final = laguerre_conway(halfway, μ, time/2)
|
||||
halfway = laguerre_conway(state, time/2, primary) + [zeros(3); ΔV]
|
||||
final = laguerre_conway(halfway, time/2, primary)
|
||||
return [final; state[7] - craft.mass_flow_rate*norm(ΔV_unit)*time]
|
||||
|
||||
end
|
||||
@@ -40,10 +37,10 @@ The propagator function
|
||||
function prop(ΔVs::Matrix{T},
|
||||
state::Vector{Float64},
|
||||
craft::Sc,
|
||||
μ::Float64,
|
||||
time::Float64) where T <: Real
|
||||
time::Float64,
|
||||
primary::Body=Sun) where T <: Real
|
||||
|
||||
if size(ΔVs)[2] != 3 throw(ErrorException("ΔV input is wrong size")) end
|
||||
size(ΔVs)[2] == 3 || throw(ΔVsize_Error())
|
||||
n = size(ΔVs)[1]
|
||||
|
||||
x_states = Vector{T}()
|
||||
@@ -63,7 +60,7 @@ function prop(ΔVs::Matrix{T},
|
||||
push!(masses, state[7])
|
||||
|
||||
for i in 1:n
|
||||
state = prop_one(ΔVs[i,:], state, craft, μ, time/n)
|
||||
state = prop_one(ΔVs[i,:], state, craft, time/n, primary)
|
||||
push!(x_states, state[1])
|
||||
push!(y_states, state[2])
|
||||
push!(z_states, state[3])
|
||||
@@ -71,12 +68,14 @@ function prop(ΔVs::Matrix{T},
|
||||
push!(dy_states, state[5])
|
||||
push!(dz_states, state[6])
|
||||
push!(masses, state[7])
|
||||
if state[7] < craft.dry_mass
|
||||
println(state[7])
|
||||
error("Mass is too low")
|
||||
end
|
||||
state[7] >= craft.dry_mass || throw(Mass_Error(state[7]))
|
||||
end
|
||||
|
||||
return [x_states, y_states, z_states, dx_states, dy_states, dz_states, masses], state
|
||||
|
||||
end
|
||||
|
||||
"""
|
||||
Convenience function for propagating a state with no thrust
|
||||
"""
|
||||
prop(x::Vector{Float64}, t::Float64, p::Body=Sun) = prop(zeros(1000,3), x, no_thrust, t, p)[1]
|
||||
|
||||
@@ -61,3 +61,9 @@ function gen_decision_vector(launch_range::Vector{DateTime},
|
||||
|
||||
end
|
||||
|
||||
"""
|
||||
This is the binary crossover function, implemented as detailed in Englander.
|
||||
It chooses the first n and last m phases from
|
||||
"""
|
||||
function crossover()
|
||||
end
|
||||
|
||||
@@ -16,8 +16,8 @@ function get_true_max(mat::Vector{Array{Float64,2}})
|
||||
return maximum(abs.(flatten(mat)))
|
||||
end
|
||||
|
||||
function plot_orbits(paths::Vector{Vector{Vector{Float64}}};
|
||||
primary::String="Earth",
|
||||
function plot_orbits(paths::Vector{Vector{Vector{Float64}}},
|
||||
primary::Body=Sun;
|
||||
labels::Vector{String}=Vector{String}(),
|
||||
title::String="Spacecraft Position",
|
||||
colors::Vector{String}=Vector{String}())
|
||||
@@ -28,7 +28,7 @@ function plot_orbits(paths::Vector{Vector{Vector{Float64}}};
|
||||
x = cos.(θ) * sin.(ϕ)'
|
||||
y = sin.(θ) * sin.(ϕ)'
|
||||
z = repeat(cos.(ϕ)',outer=[N, 1])
|
||||
ps = rs[primary] .* (x,y,z)
|
||||
ps = primary.r .* (x,y,z)
|
||||
x_p,y_p,z_p = ps
|
||||
|
||||
t1 = []
|
||||
@@ -52,7 +52,7 @@ function plot_orbits(paths::Vector{Vector{Vector{Float64}}};
|
||||
y=(y_p),
|
||||
z=(z_p),
|
||||
showscale=false,
|
||||
colorscale = p_colors[primary])
|
||||
colorscale = primary.color)
|
||||
|
||||
layout = Layout(title=title,
|
||||
width=1000,
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
export Sc
|
||||
export Sc, test_sc, bepi, no_thrust
|
||||
|
||||
mutable struct Sc
|
||||
dry_mass::Float64
|
||||
mass_flow_rate::Float64
|
||||
@@ -7,18 +8,6 @@ mutable struct Sc
|
||||
duty_cycle::Float64
|
||||
end
|
||||
|
||||
function Sc(name::String)
|
||||
# This has extra thrusters to make plots more visible (and most don't use fuel)
|
||||
if name == "test"
|
||||
return Sc(9000., 0.00025/(2000*0.00981), 0.00025, 50, 0.9)
|
||||
# This is the normal one
|
||||
elseif name == "bepi"
|
||||
return Sc(9000., 2*0.00025/(2000*0.00981), 0.00025, 2, 0.9)
|
||||
elseif name == "no_thrust"
|
||||
return Sc(9000., 0.01, 0., 0, 0.)
|
||||
else
|
||||
throw(ErrorException("Bad sc name"))
|
||||
end
|
||||
end
|
||||
|
||||
Base.copy(s::Sc) = Sc(s.dry_mass, s.mass_flow_rate, s.max_thrust, s.num_thrusters, s.duty_cycle)
|
||||
const test_sc = Sc(8000., 0.00025/(2000*0.00981), 0.00025, 50, 0.9)
|
||||
const bepi = Sc(8000., 2*0.00025/(2000*0.00981), 0.00025, 2, 0.9)
|
||||
const no_thrust = Sc(8000., 0.01, 0., 0, 0.)
|
||||
|
||||
Reference in New Issue
Block a user