Ok, now open loop is working, sc mass changed to state, and other updates
This commit is contained in:
@@ -2,7 +2,7 @@
|
||||
# DEFINING CONSTANTS
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
export μs, G, GMs, μ, rs, as, es, AU
|
||||
export μs, G, GMs, μ, rs, as, es, AU, ids
|
||||
|
||||
# Gravitational Constants
|
||||
μs = Dict(
|
||||
@@ -84,17 +84,17 @@ export μs, G, GMs, μ, rs, as, es, AU
|
||||
|
||||
# These are just the colors for plots
|
||||
const p_colors = Dict(
|
||||
"Sun" => :Electric,
|
||||
"Mercury" => :heat,
|
||||
"Venus" => :turbid,
|
||||
"Earth" => :Blues,
|
||||
"Moon" => :Greys,
|
||||
"Mars" => :Reds,
|
||||
"Jupiter" => :solar,
|
||||
"Saturn" => :turbid,
|
||||
"Uranus" => :haline,
|
||||
"Neptune" => :ice,
|
||||
"Pluto" => :matter)
|
||||
"Sun" => "Electric",
|
||||
"Mercury" => "heat",
|
||||
"Venus" => "turbid",
|
||||
"Earth" => "Blues",
|
||||
"Moon" => "Greys",
|
||||
"Mars" => "Reds",
|
||||
"Jupiter" => "solar",
|
||||
"Saturn" => "turbid",
|
||||
"Uranus" => "haline",
|
||||
"Neptune" => "ice",
|
||||
"Pluto" => "matter")
|
||||
|
||||
const ids = Dict(
|
||||
"Sun" => 10,
|
||||
|
||||
@@ -76,7 +76,6 @@ function conv_T(Tm::Vector{Float64},
|
||||
Ta::Vector{Float64},
|
||||
Tb::Vector{Float64},
|
||||
init_state::Vector{Float64},
|
||||
m::Float64,
|
||||
craft::Sc,
|
||||
time::Float64,
|
||||
μ::Float64)
|
||||
@@ -109,7 +108,7 @@ function conv_T(Tm::Vector{Float64},
|
||||
si*sθ si*cθ ci ]
|
||||
Tx, Ty, Tz = DCM*thrust_rθh
|
||||
|
||||
state = prop_one([Tx, Ty, Tz], state, craft, μ, time/n)[1]
|
||||
state = prop_one([Tx, Ty, Tz], state, copy(craft), μ, time/n)
|
||||
push!(Txs, Tx)
|
||||
push!(Tys, Ty)
|
||||
push!(Tzs, Tz)
|
||||
|
||||
@@ -5,16 +5,13 @@ export nlp_solve, mass_est
|
||||
function mass_est(T)
|
||||
ans = 0
|
||||
n = Int(length(T)/3)
|
||||
for i in 1:n
|
||||
ans += norm(T[i,:])
|
||||
end
|
||||
for i in 1:n ans += norm(T[i,:]) end
|
||||
return ans/n
|
||||
end
|
||||
|
||||
converged(x) = NLsolve.converged(x)
|
||||
|
||||
function converged(_::String)
|
||||
return false
|
||||
struct Result
|
||||
converged::Bool
|
||||
zero::Matrix{Float64}
|
||||
end
|
||||
|
||||
function nlp_solve(start::Vector{Float64},
|
||||
@@ -28,10 +25,21 @@ function nlp_solve(start::Vector{Float64},
|
||||
num_iters=1_000)
|
||||
|
||||
function f!(F,x)
|
||||
F .= 0.0
|
||||
F[1:6, 1] .= prop_nlsolve(tanh.(x), start, craft, μ, tf-t0) .- final
|
||||
try
|
||||
F .= 0.0
|
||||
F[1:6, 1] .= prop(tanh.(x), start, copy(craft), μ, tf-t0)[2][1:6] .- final[1:6]
|
||||
catch e
|
||||
F .= 10000000.0
|
||||
end
|
||||
end
|
||||
|
||||
return nlsolve(f!, atanh.(x0), ftol=tol, autodiff=:forward, iterations=num_iters)
|
||||
result = Result(false, zeros(size(x0)))
|
||||
try
|
||||
nl_results = nlsolve(f!, atanh.(x0), ftol=tol, autodiff=:forward, iterations=num_iters)
|
||||
result = Result(converged(nl_results), tanh.(nl_results.zero))
|
||||
catch e
|
||||
end
|
||||
|
||||
end
|
||||
return result
|
||||
|
||||
end
|
||||
|
||||
@@ -8,6 +8,7 @@ there's only the outer loop left to do. And that's pretty easy.
|
||||
"""
|
||||
function inner_loop(launch_date::DateTime,
|
||||
craft::Sc,
|
||||
start_mass::Float64,
|
||||
phases::Vector{Phase};
|
||||
min_flyby::Float64=1000.,
|
||||
mbh_specs=nothing,
|
||||
@@ -38,36 +39,32 @@ function inner_loop(launch_date::DateTime,
|
||||
δ = acos((phases[i].v∞_outgoing ⋅ phases[i-1].v∞_incoming)/v∞^2)
|
||||
flyby = μs[phases[i].from_planet]/v∞^2 * (1/sin(δ/2) - 1)
|
||||
true_min = rs[phases[i].from_planet] + min_flyby
|
||||
if flyby <= true_min
|
||||
error("Flyby was too low between phase $(i-1) and $(i): $(flyby) / $(true_min)")
|
||||
end
|
||||
flyby <= true_min || error("Flyby too low from phase $(i-1) to $(i): $(flyby) / $(true_min)")
|
||||
end
|
||||
end
|
||||
|
||||
time = utc2et(Dates.format(launch_date,"yyyy-mm-ddTHH:MM:SS"))
|
||||
thrust_profiles = []
|
||||
try
|
||||
for phase in phases
|
||||
planet1_state = spkssb(ids[phase.from_planet], time, "J2000")
|
||||
time += phase.time_of_flight
|
||||
planet2_state = spkssb(ids[phase.to_planet], time, "J2000")
|
||||
# TODO: Come up with improved method of calculating "n"
|
||||
start = planet1_state + [0., 0., 0., phase.v∞_outgoing...]
|
||||
final = planet2_state + [0., 0., 0., phase.v∞_incoming...]
|
||||
if mbh_specs === nothing
|
||||
best = mbh(start, final, craft, μs["Sun"], 0.0, phase.time_of_flight, 10,
|
||||
verbose=verbose)[1]
|
||||
else
|
||||
num_iters, sil, dil = mbh_specs
|
||||
best = mbh(start, final, craft, μs["Sun"], 0.0, phase.time_of_flight, 10,
|
||||
verbose=verbose, num_iters=num_iters, search_patience_lim=sil,
|
||||
drill_patience_lim=dil)
|
||||
end
|
||||
push!(thrust_profiles, best)
|
||||
craft.mass = prop(tanh.(best.zero), planet1_state, sc, μs["Sun"], prop_time)[2][end]
|
||||
|
||||
for phase in phases
|
||||
planet1_state = [spkssb(ids[phase.from_planet], time, "J2000"); 0.0]
|
||||
time += phase.time_of_flight
|
||||
planet2_state = [spkssb(ids[phase.to_planet], time, "J2000"); 0.0]
|
||||
start = planet1_state + [0., 0., 0., phase.v∞_outgoing..., start_mass]
|
||||
final = planet2_state + [0., 0., 0., phase.v∞_incoming..., start_mass]
|
||||
println(start)
|
||||
println(final)
|
||||
# TODO: Come up with improved method of calculating "n"
|
||||
if mbh_specs === nothing
|
||||
best = mbh(start, final, craft, μs["Sun"], 0.0, phase.time_of_flight, 20,
|
||||
verbose=verbose)[1]
|
||||
else
|
||||
sil, dil = mbh_specs
|
||||
best = mbh(start, final, craft, μs["Sun"], 0.0, phase.time_of_flight, 20,
|
||||
verbose=verbose, search_patience_lim=sil, drill_patience_lim=dil)[1]
|
||||
end
|
||||
return craft.mass, thrust_profiles
|
||||
catch
|
||||
return "One path did not converge"
|
||||
push!(thrust_profiles, best.zero)
|
||||
end
|
||||
return thrust_profiles
|
||||
|
||||
end
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
function laguerre_conway(state::Vector{T}, μ::Float64, time::Float64) where T
|
||||
function laguerre_conway(state::Vector{<:Real}, μ::Float64, time::Float64)
|
||||
|
||||
n = 5 # Choose LaGuerre-Conway "n"
|
||||
i = 0
|
||||
|
||||
@@ -26,42 +26,38 @@ function mbh(start::AbstractVector,
|
||||
t0::AbstractFloat,
|
||||
tf::AbstractFloat,
|
||||
n::Int;
|
||||
num_iters=25,
|
||||
search_patience_lim::Int=200,
|
||||
drill_patience_lim::Int=200,
|
||||
search_patience_lim::Int=2000,
|
||||
drill_patience_lim::Int=40,
|
||||
tol=1e-6,
|
||||
verbose=false)
|
||||
|
||||
archive = []
|
||||
|
||||
i = 0
|
||||
if verbose println("Current Iteration") end
|
||||
while true
|
||||
x_current = Result(false, 1e8*ones(n,3))
|
||||
while i < search_patience_lim
|
||||
i += 1
|
||||
if verbose print("\r",i) end
|
||||
search_impatience = 0
|
||||
drill_impatience = 0
|
||||
x_star = nlp_solve(start, final, craft, μ, t0, tf, new_x(n), tol=tol, num_iters=100)
|
||||
while converged(x_star) == false && search_impatience < search_patience_lim
|
||||
search_impatience += 1
|
||||
x_star = nlp_solve(start, final, craft, μ, t0, tf, new_x(n), tol=tol, num_iters=100)
|
||||
end
|
||||
if drill_impatience > drill_patience_lim break end
|
||||
drill_impatience = 0
|
||||
if converged(x_star)
|
||||
if verbose print("\r\t", "search: ", i, " drill: ", drill_impatience, " ") end
|
||||
x_star = nlp_solve(start, final, craft, μ, t0, tf, new_x(n), tol=tol)
|
||||
# If x_star is converged and better, set new x_current
|
||||
if x_star.converged && mass_est(x_star.zero) < mass_est(x_current.zero)
|
||||
x_current = x_star
|
||||
end
|
||||
# If x_star is converged, drill down, otherwise, start over
|
||||
if x_star.converged
|
||||
while drill_impatience < drill_patience_lim
|
||||
x_star = nlp_solve(start, final, craft, μ, t0, tf, perturb(tanh.(x_current.zero),n), tol=tol)
|
||||
if converged(x_star) && mass_est(tanh.(x_star.zero)) < mass_est(tanh.(x_current.zero))
|
||||
x_star = nlp_solve(start, final, craft, μ, t0, tf, perturb(x_current.zero,n), tol=tol)
|
||||
if x_star.converged && mass_est(x_star.zero) < mass_est(x_current.zero)
|
||||
x_current = x_star
|
||||
drill_impatience = 0
|
||||
else
|
||||
if verbose print("\r\t", "search: ", i, " drill: ", drill_impatience, " ") end
|
||||
drill_impatience += 1
|
||||
end
|
||||
end
|
||||
push!(archive, x_current)
|
||||
end
|
||||
if i >= num_iters break end
|
||||
end
|
||||
if verbose println() end
|
||||
|
||||
@@ -70,8 +66,8 @@ function mbh(start::AbstractVector,
|
||||
current_best_mass = 1e8
|
||||
best = archive[1]
|
||||
for candidate in archive
|
||||
if mass_est(tanh.(candidate.zero)) < current_best_mass
|
||||
current_best_mass = mass_est(tanh.(candidate.zero))
|
||||
if mass_est(candidate.zero) < current_best_mass
|
||||
current_best_mass = mass_est(candidate.zero)
|
||||
best = candidate
|
||||
end
|
||||
end
|
||||
|
||||
@@ -3,234 +3,80 @@ export prop
|
||||
"""
|
||||
Maximum ΔV that a spacecraft can impulse for a given single time step
|
||||
"""
|
||||
function max_ΔV(duty_cycle::T,
|
||||
function max_ΔV(duty_cycle::Float64,
|
||||
num_thrusters::Int,
|
||||
max_thrust::T,
|
||||
tf::T,
|
||||
t0::T,
|
||||
mass::S) where {T <: Real, S <: Real}
|
||||
max_thrust::Float64,
|
||||
tf::Float64,
|
||||
t0::Float64,
|
||||
mass::T) where T <: Real
|
||||
return duty_cycle*num_thrusters*max_thrust*(tf-t0)/mass
|
||||
end
|
||||
|
||||
"""
|
||||
This function propagates the spacecraft forward in time 1 Sim-Flanagan step (of variable length of time),
|
||||
applying a thrust in the center.
|
||||
"""
|
||||
function prop_one(thrust_unit::Vector{<:Real},
|
||||
state::Vector{<:Real},
|
||||
duty_cycle::Float64,
|
||||
num_thrusters::Int,
|
||||
max_thrust::Float64,
|
||||
mass::T,
|
||||
mass_flow_rate::Float64,
|
||||
μ::Float64,
|
||||
time::Float64) where T<:Real
|
||||
|
||||
ΔV = max_ΔV(duty_cycle, num_thrusters, max_thrust, time, 0., mass) * thrust_unit
|
||||
halfway = laguerre_conway(state, μ, time/2) + [0., 0., 0., ΔV...]
|
||||
return laguerre_conway(halfway, μ, time/2), mass - mass_flow_rate*norm(thrust_unit)*time
|
||||
|
||||
end
|
||||
|
||||
"""
|
||||
A convenience function for using spacecraft. Note that this function outputs a sc instead of a mass
|
||||
"""
|
||||
function prop_one(ΔV_unit::Vector{T},
|
||||
state::Vector{S},
|
||||
function prop_one(ΔV_unit::Vector{<:Real},
|
||||
state::Vector{<:Real},
|
||||
craft::Sc,
|
||||
μ::Float64,
|
||||
time::Float64) where {T <: Real,S <: Real}
|
||||
state, mass = prop_one(ΔV_unit, state, craft.duty_cycle, craft.num_thrusters, craft.max_thrust,
|
||||
craft.mass, craft.mass_flow_rate, μ, time)
|
||||
return state, Sc(mass, craft.mass_flow_rate, craft.max_thrust, craft.num_thrusters, craft.duty_cycle)
|
||||
time::Float64)
|
||||
|
||||
for direction in ΔV_unit
|
||||
if abs(direction) > 1.0
|
||||
println(direction)
|
||||
error("ΔV is impossibly high")
|
||||
end
|
||||
end
|
||||
ΔV = max_ΔV(craft.duty_cycle, craft.num_thrusters, craft.max_thrust, time, 0., state[7]) * ΔV_unit
|
||||
halfway = laguerre_conway(state, μ, time/2) + [zeros(3); ΔV]
|
||||
final = laguerre_conway(halfway, μ, time/2)
|
||||
return [final; state[7] - craft.mass_flow_rate*norm(ΔV_unit)*time]
|
||||
|
||||
end
|
||||
|
||||
|
||||
"""
|
||||
This propagates over a given time period, with a certain number of intermediate steps
|
||||
The propagator function
|
||||
"""
|
||||
function prop(ΔVs::Matrix{T},
|
||||
state::Vector{Float64},
|
||||
duty_cycle::Float64,
|
||||
num_thrusters::Int,
|
||||
max_thrust::Float64,
|
||||
mass::Float64,
|
||||
mass_flow_rate::Float64,
|
||||
craft::Sc,
|
||||
μ::Float64,
|
||||
time::Float64) where T <: Real
|
||||
|
||||
if size(ΔVs)[2] != 3 throw(ErrorException("ΔV input is wrong size")) end
|
||||
n = size(ΔVs)[i]
|
||||
|
||||
for i in 1:n
|
||||
state, mass = prop_one(ΔVs[i,:], state, duty_cycle, num_thrusters, max_thrust, mass,
|
||||
mass_flow_rate, μ, time/n)
|
||||
end
|
||||
|
||||
return state, mass
|
||||
|
||||
end
|
||||
|
||||
"""
|
||||
The same function, using Scs
|
||||
"""
|
||||
function prop(ΔVs::Matrix{T},
|
||||
state::Vector{S},
|
||||
craft::Sc,
|
||||
μ::Float64,
|
||||
time::Float64) where {T <: Real, S <: Real}
|
||||
|
||||
if size(ΔVs)[2] != 3 throw(ErrorException("ΔV input is wrong size")) end
|
||||
n = size(ΔVs)[1]
|
||||
|
||||
x_states = [state[1]]
|
||||
y_states = [state[2]]
|
||||
z_states = [state[3]]
|
||||
dx_states = [state[4]]
|
||||
dy_states = [state[5]]
|
||||
dz_states = [state[6]]
|
||||
masses = [craft.mass]
|
||||
x_states = Vector{T}()
|
||||
y_states = Vector{T}()
|
||||
z_states = Vector{T}()
|
||||
dx_states = Vector{T}()
|
||||
dy_states = Vector{T}()
|
||||
dz_states = Vector{T}()
|
||||
masses = Vector{T}()
|
||||
|
||||
push!(x_states, state[1])
|
||||
push!(y_states, state[2])
|
||||
push!(z_states, state[3])
|
||||
push!(dx_states, state[4])
|
||||
push!(dy_states, state[5])
|
||||
push!(dz_states, state[6])
|
||||
push!(masses, state[7])
|
||||
|
||||
for i in 1:n
|
||||
state, craft = prop_one(ΔVs[i,:], state, craft, μ, time/n)
|
||||
state = prop_one(ΔVs[i,:], state, craft, μ, time/n)
|
||||
push!(x_states, state[1])
|
||||
push!(y_states, state[2])
|
||||
push!(z_states, state[3])
|
||||
push!(dx_states, state[4])
|
||||
push!(dy_states, state[5])
|
||||
push!(dz_states, state[6])
|
||||
push!(masses, craft.mass)
|
||||
push!(masses, state[7])
|
||||
if state[7] < craft.dry_mass
|
||||
println(state[7])
|
||||
error("Mass is too low")
|
||||
end
|
||||
end
|
||||
|
||||
return [x_states, y_states, z_states, dx_states, dy_states, dz_states], masses, state
|
||||
return [x_states, y_states, z_states, dx_states, dy_states, dz_states, masses], state
|
||||
|
||||
end
|
||||
|
||||
function prop_nlsolve(ΔVs::Matrix{T},
|
||||
state::Vector{S},
|
||||
craft::Sc,
|
||||
μ::Float64,
|
||||
time::Float64) where {T <: Real, S <: Real}
|
||||
|
||||
n = size(ΔVs)[1]
|
||||
try
|
||||
for i in 1:n
|
||||
state, craft = prop_one(ΔVs[i,:], state, craft, μ, time/n)
|
||||
end
|
||||
return state
|
||||
catch
|
||||
return [0., 0., 0., 0., 0., 0.]
|
||||
end
|
||||
|
||||
|
||||
end
|
||||
|
||||
function prop_simple(ΔVs::AbstractMatrix,
|
||||
state::AbstractVector,
|
||||
craft::Sc,
|
||||
μ::Float64,
|
||||
time::Float64)
|
||||
|
||||
if size(ΔVs)[2] != 3 throw(ErrorException("ΔV input is wrong size")) end
|
||||
n = size(ΔVs)[1]
|
||||
|
||||
for i in 1:n
|
||||
state, craft = prop_one(ΔVs[i,:], state, craft, μ, time/n)
|
||||
end
|
||||
|
||||
return state
|
||||
|
||||
end
|
||||
|
||||
function prop_one_simple(Tx, Ty, Tz, x, y, z, dx, dy, dz, t, μ)
|
||||
|
||||
# perform laguerre_conway once
|
||||
r0_mag = √(x^2 + y^2 + z^2)
|
||||
v0_mag = √(dx^2 + dy^2 + dz^2)
|
||||
σ0 = ([x, y, z] ⋅ [dx, dy, dz])/√(μ)
|
||||
a = 1 / ( 2/r0_mag - v0_mag^2/μ )
|
||||
coeff = 1 - r0_mag/a
|
||||
|
||||
if a > 0 # Elliptical
|
||||
ΔM = ΔE_new = √(μ) / sqrt(a^3) * t/2
|
||||
ΔE = 1000
|
||||
while abs(ΔE - ΔE_new) > 1e-10
|
||||
ΔE = ΔE_new
|
||||
F = ΔE - ΔM + σ0 / √(a) * (1-cos(ΔE)) - coeff * sin(ΔE)
|
||||
dF = 1 + σ0 / √(a) * sin(ΔE) - coeff * cos(ΔE)
|
||||
d2F = σ0 / √(a) * cos(ΔE) + coeff * sin(ΔE)
|
||||
sign = dF >= 0 ? 1 : -1
|
||||
ΔE_new = ΔE - 5*F / ( dF + sign * √(abs((5-1)^2*dF^2 - 5*(5-1)*F*d2F )))
|
||||
end
|
||||
F = 1 - a/r0_mag * (1-cos(ΔE))
|
||||
G = a * σ0/ √(μ) * (1-cos(ΔE)) + r0_mag * √(a) / √(μ) * sin(ΔE)
|
||||
r = a + (r0_mag - a) * cos(ΔE) + σ0 * √(a) * sin(ΔE)
|
||||
Ft = -√(a)*√(μ) / (r*r0_mag) * sin(ΔE)
|
||||
Gt = 1 - a/r * (1-cos(ΔE))
|
||||
else # Hyperbolic or Parabolic
|
||||
ΔN = √(μ) / sqrt(-a^3) * t/2
|
||||
ΔH = 0
|
||||
ΔH_new = t/2 < 0 ? -1 : 1
|
||||
while abs(ΔH - ΔH_new) > 1e-10
|
||||
ΔH = ΔH_new
|
||||
F = -ΔN - ΔH + σ0 / √(-a) * (cos(ΔH)-1) + coeff * sin(ΔH)
|
||||
dF = -1 + σ0 / √(-a) * sin(ΔH) + coeff * cos(ΔH)
|
||||
d2F = σ0 / √(-a) * cos(ΔH) + coeff * sin(ΔH)
|
||||
sign = dF >= 0 ? 1 : -1
|
||||
ΔH_new = ΔH - 5*F / ( dF + sign * √(abs((5-1)^2*dF^2 - 5*(5-1)*F*d2F )))
|
||||
end
|
||||
F = 1 - a/r0_mag * (1-cos(ΔH))
|
||||
G = a * σ0/ √(μ) * (1-cos(ΔH)) + r0_mag * √(-a) / √(μ) * sin(ΔH)
|
||||
r = a + (r0_mag - a) * cos(ΔH) + σ0 * √(-a) * sin(ΔH)
|
||||
Ft = -√(-a)*√(μ) / (r*r0_mag) * sin(ΔH)
|
||||
Gt = 1 - a/r * (1-cos(ΔH))
|
||||
end
|
||||
|
||||
# add the thrust vector
|
||||
x,y,z,dx,dy,dz = [F*[x,y,z] + G*[dx,dy,dz]; Ft*[x,y,z] + Gt*[dx,dy,dz] + [Tx, Ty, Tz]]
|
||||
|
||||
#perform again
|
||||
r0_mag = √(x^2 + y^2 + z^2)
|
||||
v0_mag = √(dx^2 + dy^2 + dz^2)
|
||||
σ0 = ([x, y, z] ⋅ [dx, dy, dz])/√(μ)
|
||||
a = 1 / ( 2/r0_mag - v0_mag^2/μ )
|
||||
coeff = 1 - r0_mag/a
|
||||
|
||||
if a > 0 # Elliptical
|
||||
ΔM = ΔE_new = √(μ) / sqrt(a^3) * t/2
|
||||
ΔE = 1000
|
||||
while abs(ΔE - ΔE_new) > 1e-10
|
||||
ΔE = ΔE_new
|
||||
F = ΔE - ΔM + σ0 / √(a) * (1-cos(ΔE)) - coeff * sin(ΔE)
|
||||
dF = 1 + σ0 / √(a) * sin(ΔE) - coeff * cos(ΔE)
|
||||
d2F = σ0 / √(a) * cos(ΔE) + coeff * sin(ΔE)
|
||||
sign = dF >= 0 ? 1 : -1
|
||||
ΔE_new = ΔE - 5*F / ( dF + sign * √(abs((5-1)^2*dF^2 - 5*(5-1)*F*d2F )))
|
||||
end
|
||||
F = 1 - a/r0_mag * (1-cos(ΔE))
|
||||
G = a * σ0/ √(μ) * (1-cos(ΔE)) + r0_mag * √(a) / √(μ) * sin(ΔE)
|
||||
r = a + (r0_mag - a) * cos(ΔE) + σ0 * √(a) * sin(ΔE)
|
||||
Ft = -√(a)*√(μ) / (r*r0_mag) * sin(ΔE)
|
||||
Gt = 1 - a/r * (1-cos(ΔE))
|
||||
else # Hyperbolic or Parabolic
|
||||
ΔN = √(μ) / sqrt(-a^3) * t/2
|
||||
ΔH = 0
|
||||
ΔH_new = t/2 < 0 ? -1 : 1
|
||||
while abs(ΔH - ΔH_new) > 1e-10
|
||||
ΔH = ΔH_new
|
||||
F = -ΔN - ΔH + σ0 / √(-a) * (cos(ΔH)-1) + coeff * sin(ΔH)
|
||||
dF = -1 + σ0 / √(-a) * sin(ΔH) + coeff * cos(ΔH)
|
||||
d2F = σ0 / √(-a) * cos(ΔH) + coeff * sin(ΔH)
|
||||
sign = dF >= 0 ? 1 : -1
|
||||
ΔH_new = ΔH - 5*F / ( dF + sign * √(abs((5-1)^2*dF^2 - 5*(5-1)*F*d2F )))
|
||||
end
|
||||
F = 1 - a/r0_mag * (1-cos(ΔH))
|
||||
G = a * σ0/ √(μ) * (1-cos(ΔH)) + r0_mag * √(-a) / √(μ) * sin(ΔH)
|
||||
r = a + (r0_mag - a) * cos(ΔH) + σ0 * √(-a) * sin(ΔH)
|
||||
Ft = -√(-a)*√(μ) / (r*r0_mag) * sin(ΔH)
|
||||
Gt = 1 - a/r * (1-cos(ΔH))
|
||||
end
|
||||
|
||||
return [F*[x,y,z] + G*[dx,dy,dz]; Ft*[x,y,z] + Gt*[dx,dy,dz]]
|
||||
|
||||
end
|
||||
@@ -38,6 +38,12 @@ function plot_orbits(paths::Vector{Vector{Vector{Float64}}};
|
||||
color = colors != [] ? colors[i] : random_color()
|
||||
push!(t1, scatter3d(;x=(path[1]),y=(path[2]),z=(path[3]),
|
||||
mode="lines", name=label, line_color=color, line_width=3))
|
||||
push!(t1, scatter3d(;x=([path[1][1]]),y=([path[2][1]]),z=([path[3][1]]),
|
||||
mode="markers", showlegend=false,
|
||||
marker=attr(color=color, size=3, symbol="circle")))
|
||||
push!(t1, scatter3d(;x=([path[1][end]]),y=([path[2][end]]),z=([path[3][end]]),
|
||||
mode="markers", showlegend=false,
|
||||
marker=attr(color=color, size=3, symbol="diamond")))
|
||||
end
|
||||
limit = max(maximum(abs.(flatten(flatten(paths)))),
|
||||
maximum(abs.(flatten(ps)))) * 1.1
|
||||
@@ -48,15 +54,16 @@ function plot_orbits(paths::Vector{Vector{Vector{Float64}}};
|
||||
showscale=false,
|
||||
colorscale = p_colors[primary])
|
||||
|
||||
layout = Layout(;title=title,
|
||||
width=1000,
|
||||
height=600,
|
||||
paper_bgcolor="#222529",
|
||||
scene = attr(xaxis = attr(autorange = false,range=[-limit,limit]),
|
||||
yaxis = attr(autorange = false,range=[-limit,limit]),
|
||||
zaxis = attr(autorange = false,range=[-limit,limit]),
|
||||
aspectratio=attr(x=1,y=1,z=1),
|
||||
aspectmode="manual"))
|
||||
layout = Layout(title=title,
|
||||
width=1000,
|
||||
height=600,
|
||||
paper_bgcolor="rgba(5,10,40,1.0)",
|
||||
plot_bgcolor="rgba(100,100,100,0.01)",
|
||||
scene = attr(xaxis = attr(autorange = false,range=[-limit,limit]),
|
||||
yaxis = attr(autorange = false,range=[-limit,limit]),
|
||||
zaxis = attr(autorange = false,range=[-limit,limit]),
|
||||
aspectratio=attr(x=1,y=1,z=1),
|
||||
aspectmode="manual"))
|
||||
|
||||
p = Plot([t1...,t2],layout)
|
||||
plot(p)
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
export Sc
|
||||
struct Sc{T <: Real}
|
||||
mass::T
|
||||
mutable struct Sc
|
||||
dry_mass::Float64
|
||||
mass_flow_rate::Float64
|
||||
max_thrust::Float64
|
||||
num_thrusters::Int
|
||||
@@ -8,11 +8,17 @@ struct Sc{T <: Real}
|
||||
end
|
||||
|
||||
function Sc(name::String)
|
||||
# This has extra thrusters to make plots more visible (and most don't use fuel)
|
||||
if name == "test"
|
||||
return Sc(10000., 0.01, 0.05, 2, 1.)
|
||||
return Sc(9000., 0.00025/(2000*0.00981), 0.00025, 50, 0.9)
|
||||
# This is the normal one
|
||||
elseif name == "bepi"
|
||||
return Sc(9000., 2*0.00025/(2000*0.00981), 0.00025, 2, 0.9)
|
||||
elseif name == "no_thrust"
|
||||
return Sc(10000., 0.01, 0., 0, 0.)
|
||||
return Sc(9000., 0.01, 0., 0, 0.)
|
||||
else
|
||||
throw(ErrorException("Bad sc name"))
|
||||
end
|
||||
end
|
||||
|
||||
Base.copy(s::Sc) = Sc(s.dry_mass, s.mass_flow_rate, s.max_thrust, s.num_thrusters, s.duty_cycle)
|
||||
|
||||
Reference in New Issue
Block a user