Ok, now open loop is working, sc mass changed to state, and other updates

This commit is contained in:
Connor
2021-09-21 22:14:49 -06:00
parent 982440c976
commit eaae54ac59
16 changed files with 320 additions and 373 deletions

View File

@@ -5,16 +5,13 @@ export nlp_solve, mass_est
function mass_est(T)
ans = 0
n = Int(length(T)/3)
for i in 1:n
ans += norm(T[i,:])
end
for i in 1:n ans += norm(T[i,:]) end
return ans/n
end
converged(x) = NLsolve.converged(x)
function converged(_::String)
return false
struct Result
converged::Bool
zero::Matrix{Float64}
end
function nlp_solve(start::Vector{Float64},
@@ -28,10 +25,21 @@ function nlp_solve(start::Vector{Float64},
num_iters=1_000)
function f!(F,x)
F .= 0.0
F[1:6, 1] .= prop_nlsolve(tanh.(x), start, craft, μ, tf-t0) .- final
try
F .= 0.0
F[1:6, 1] .= prop(tanh.(x), start, copy(craft), μ, tf-t0)[2][1:6] .- final[1:6]
catch e
F .= 10000000.0
end
end
return nlsolve(f!, atanh.(x0), ftol=tol, autodiff=:forward, iterations=num_iters)
result = Result(false, zeros(size(x0)))
try
nl_results = nlsolve(f!, atanh.(x0), ftol=tol, autodiff=:forward, iterations=num_iters)
result = Result(converged(nl_results), tanh.(nl_results.zero))
catch e
end
end
return result
end

View File

@@ -8,6 +8,7 @@ there's only the outer loop left to do. And that's pretty easy.
"""
function inner_loop(launch_date::DateTime,
craft::Sc,
start_mass::Float64,
phases::Vector{Phase};
min_flyby::Float64=1000.,
mbh_specs=nothing,
@@ -38,36 +39,32 @@ function inner_loop(launch_date::DateTime,
δ = acos((phases[i].v∞_outgoing phases[i-1].v∞_incoming)/v∞^2)
flyby = μs[phases[i].from_planet]/v∞^2 * (1/sin(δ/2) - 1)
true_min = rs[phases[i].from_planet] + min_flyby
if flyby <= true_min
error("Flyby was too low between phase $(i-1) and $(i): $(flyby) / $(true_min)")
end
flyby <= true_min || error("Flyby too low from phase $(i-1) to $(i): $(flyby) / $(true_min)")
end
end
time = utc2et(Dates.format(launch_date,"yyyy-mm-ddTHH:MM:SS"))
thrust_profiles = []
try
for phase in phases
planet1_state = spkssb(ids[phase.from_planet], time, "J2000")
time += phase.time_of_flight
planet2_state = spkssb(ids[phase.to_planet], time, "J2000")
# TODO: Come up with improved method of calculating "n"
start = planet1_state + [0., 0., 0., phase.v∞_outgoing...]
final = planet2_state + [0., 0., 0., phase.v∞_incoming...]
if mbh_specs === nothing
best = mbh(start, final, craft, μs["Sun"], 0.0, phase.time_of_flight, 10,
verbose=verbose)[1]
else
num_iters, sil, dil = mbh_specs
best = mbh(start, final, craft, μs["Sun"], 0.0, phase.time_of_flight, 10,
verbose=verbose, num_iters=num_iters, search_patience_lim=sil,
drill_patience_lim=dil)
end
push!(thrust_profiles, best)
craft.mass = prop(tanh.(best.zero), planet1_state, sc, μs["Sun"], prop_time)[2][end]
for phase in phases
planet1_state = [spkssb(ids[phase.from_planet], time, "J2000"); 0.0]
time += phase.time_of_flight
planet2_state = [spkssb(ids[phase.to_planet], time, "J2000"); 0.0]
start = planet1_state + [0., 0., 0., phase.v∞_outgoing..., start_mass]
final = planet2_state + [0., 0., 0., phase.v∞_incoming..., start_mass]
println(start)
println(final)
# TODO: Come up with improved method of calculating "n"
if mbh_specs === nothing
best = mbh(start, final, craft, μs["Sun"], 0.0, phase.time_of_flight, 20,
verbose=verbose)[1]
else
sil, dil = mbh_specs
best = mbh(start, final, craft, μs["Sun"], 0.0, phase.time_of_flight, 20,
verbose=verbose, search_patience_lim=sil, drill_patience_lim=dil)[1]
end
return craft.mass, thrust_profiles
catch
return "One path did not converge"
push!(thrust_profiles, best.zero)
end
return thrust_profiles
end

View File

@@ -1,4 +1,4 @@
function laguerre_conway(state::Vector{T}, μ::Float64, time::Float64) where T
function laguerre_conway(state::Vector{<:Real}, μ::Float64, time::Float64)
n = 5 # Choose LaGuerre-Conway "n"
i = 0

View File

@@ -26,42 +26,38 @@ function mbh(start::AbstractVector,
t0::AbstractFloat,
tf::AbstractFloat,
n::Int;
num_iters=25,
search_patience_lim::Int=200,
drill_patience_lim::Int=200,
search_patience_lim::Int=2000,
drill_patience_lim::Int=40,
tol=1e-6,
verbose=false)
archive = []
i = 0
if verbose println("Current Iteration") end
while true
x_current = Result(false, 1e8*ones(n,3))
while i < search_patience_lim
i += 1
if verbose print("\r",i) end
search_impatience = 0
drill_impatience = 0
x_star = nlp_solve(start, final, craft, μ, t0, tf, new_x(n), tol=tol, num_iters=100)
while converged(x_star) == false && search_impatience < search_patience_lim
search_impatience += 1
x_star = nlp_solve(start, final, craft, μ, t0, tf, new_x(n), tol=tol, num_iters=100)
end
if drill_impatience > drill_patience_lim break end
drill_impatience = 0
if converged(x_star)
if verbose print("\r\t", "search: ", i, " drill: ", drill_impatience, " ") end
x_star = nlp_solve(start, final, craft, μ, t0, tf, new_x(n), tol=tol)
# If x_star is converged and better, set new x_current
if x_star.converged && mass_est(x_star.zero) < mass_est(x_current.zero)
x_current = x_star
end
# If x_star is converged, drill down, otherwise, start over
if x_star.converged
while drill_impatience < drill_patience_lim
x_star = nlp_solve(start, final, craft, μ, t0, tf, perturb(tanh.(x_current.zero),n), tol=tol)
if converged(x_star) && mass_est(tanh.(x_star.zero)) < mass_est(tanh.(x_current.zero))
x_star = nlp_solve(start, final, craft, μ, t0, tf, perturb(x_current.zero,n), tol=tol)
if x_star.converged && mass_est(x_star.zero) < mass_est(x_current.zero)
x_current = x_star
drill_impatience = 0
else
if verbose print("\r\t", "search: ", i, " drill: ", drill_impatience, " ") end
drill_impatience += 1
end
end
push!(archive, x_current)
end
if i >= num_iters break end
end
if verbose println() end
@@ -70,8 +66,8 @@ function mbh(start::AbstractVector,
current_best_mass = 1e8
best = archive[1]
for candidate in archive
if mass_est(tanh.(candidate.zero)) < current_best_mass
current_best_mass = mass_est(tanh.(candidate.zero))
if mass_est(candidate.zero) < current_best_mass
current_best_mass = mass_est(candidate.zero)
best = candidate
end
end

View File

@@ -3,234 +3,80 @@ export prop
"""
Maximum ΔV that a spacecraft can impulse for a given single time step
"""
function max_ΔV(duty_cycle::T,
function max_ΔV(duty_cycle::Float64,
num_thrusters::Int,
max_thrust::T,
tf::T,
t0::T,
mass::S) where {T <: Real, S <: Real}
max_thrust::Float64,
tf::Float64,
t0::Float64,
mass::T) where T <: Real
return duty_cycle*num_thrusters*max_thrust*(tf-t0)/mass
end
"""
This function propagates the spacecraft forward in time 1 Sim-Flanagan step (of variable length of time),
applying a thrust in the center.
"""
function prop_one(thrust_unit::Vector{<:Real},
state::Vector{<:Real},
duty_cycle::Float64,
num_thrusters::Int,
max_thrust::Float64,
mass::T,
mass_flow_rate::Float64,
μ::Float64,
time::Float64) where T<:Real
ΔV = max_ΔV(duty_cycle, num_thrusters, max_thrust, time, 0., mass) * thrust_unit
halfway = laguerre_conway(state, μ, time/2) + [0., 0., 0., ΔV...]
return laguerre_conway(halfway, μ, time/2), mass - mass_flow_rate*norm(thrust_unit)*time
end
"""
A convenience function for using spacecraft. Note that this function outputs a sc instead of a mass
"""
function prop_one(ΔV_unit::Vector{T},
state::Vector{S},
function prop_one(ΔV_unit::Vector{<:Real},
state::Vector{<:Real},
craft::Sc,
μ::Float64,
time::Float64) where {T <: Real,S <: Real}
state, mass = prop_one(ΔV_unit, state, craft.duty_cycle, craft.num_thrusters, craft.max_thrust,
craft.mass, craft.mass_flow_rate, μ, time)
return state, Sc(mass, craft.mass_flow_rate, craft.max_thrust, craft.num_thrusters, craft.duty_cycle)
time::Float64)
for direction in ΔV_unit
if abs(direction) > 1.0
println(direction)
error("ΔV is impossibly high")
end
end
ΔV = max_ΔV(craft.duty_cycle, craft.num_thrusters, craft.max_thrust, time, 0., state[7]) * ΔV_unit
halfway = laguerre_conway(state, μ, time/2) + [zeros(3); ΔV]
final = laguerre_conway(halfway, μ, time/2)
return [final; state[7] - craft.mass_flow_rate*norm(ΔV_unit)*time]
end
"""
This propagates over a given time period, with a certain number of intermediate steps
The propagator function
"""
function prop(ΔVs::Matrix{T},
state::Vector{Float64},
duty_cycle::Float64,
num_thrusters::Int,
max_thrust::Float64,
mass::Float64,
mass_flow_rate::Float64,
craft::Sc,
μ::Float64,
time::Float64) where T <: Real
if size(ΔVs)[2] != 3 throw(ErrorException("ΔV input is wrong size")) end
n = size(ΔVs)[i]
for i in 1:n
state, mass = prop_one(ΔVs[i,:], state, duty_cycle, num_thrusters, max_thrust, mass,
mass_flow_rate, μ, time/n)
end
return state, mass
end
"""
The same function, using Scs
"""
function prop(ΔVs::Matrix{T},
state::Vector{S},
craft::Sc,
μ::Float64,
time::Float64) where {T <: Real, S <: Real}
if size(ΔVs)[2] != 3 throw(ErrorException("ΔV input is wrong size")) end
n = size(ΔVs)[1]
x_states = [state[1]]
y_states = [state[2]]
z_states = [state[3]]
dx_states = [state[4]]
dy_states = [state[5]]
dz_states = [state[6]]
masses = [craft.mass]
x_states = Vector{T}()
y_states = Vector{T}()
z_states = Vector{T}()
dx_states = Vector{T}()
dy_states = Vector{T}()
dz_states = Vector{T}()
masses = Vector{T}()
push!(x_states, state[1])
push!(y_states, state[2])
push!(z_states, state[3])
push!(dx_states, state[4])
push!(dy_states, state[5])
push!(dz_states, state[6])
push!(masses, state[7])
for i in 1:n
state, craft = prop_one(ΔVs[i,:], state, craft, μ, time/n)
state = prop_one(ΔVs[i,:], state, craft, μ, time/n)
push!(x_states, state[1])
push!(y_states, state[2])
push!(z_states, state[3])
push!(dx_states, state[4])
push!(dy_states, state[5])
push!(dz_states, state[6])
push!(masses, craft.mass)
push!(masses, state[7])
if state[7] < craft.dry_mass
println(state[7])
error("Mass is too low")
end
end
return [x_states, y_states, z_states, dx_states, dy_states, dz_states], masses, state
return [x_states, y_states, z_states, dx_states, dy_states, dz_states, masses], state
end
function prop_nlsolve(ΔVs::Matrix{T},
state::Vector{S},
craft::Sc,
μ::Float64,
time::Float64) where {T <: Real, S <: Real}
n = size(ΔVs)[1]
try
for i in 1:n
state, craft = prop_one(ΔVs[i,:], state, craft, μ, time/n)
end
return state
catch
return [0., 0., 0., 0., 0., 0.]
end
end
function prop_simple(ΔVs::AbstractMatrix,
state::AbstractVector,
craft::Sc,
μ::Float64,
time::Float64)
if size(ΔVs)[2] != 3 throw(ErrorException("ΔV input is wrong size")) end
n = size(ΔVs)[1]
for i in 1:n
state, craft = prop_one(ΔVs[i,:], state, craft, μ, time/n)
end
return state
end
function prop_one_simple(Tx, Ty, Tz, x, y, z, dx, dy, dz, t, μ)
# perform laguerre_conway once
r0_mag = (x^2 + y^2 + z^2)
v0_mag = (dx^2 + dy^2 + dz^2)
σ0 = ([x, y, z] [dx, dy, dz])/(μ)
a = 1 / ( 2/r0_mag - v0_mag^2/μ )
coeff = 1 - r0_mag/a
if a > 0 # Elliptical
ΔM = ΔE_new = (μ) / sqrt(a^3) * t/2
ΔE = 1000
while abs(ΔE - ΔE_new) > 1e-10
ΔE = ΔE_new
F = ΔE - ΔM + σ0 / (a) * (1-cos(ΔE)) - coeff * sin(ΔE)
dF = 1 + σ0 / (a) * sin(ΔE) - coeff * cos(ΔE)
d2F = σ0 / (a) * cos(ΔE) + coeff * sin(ΔE)
sign = dF >= 0 ? 1 : -1
ΔE_new = ΔE - 5*F / ( dF + sign * (abs((5-1)^2*dF^2 - 5*(5-1)*F*d2F )))
end
F = 1 - a/r0_mag * (1-cos(ΔE))
G = a * σ0/ (μ) * (1-cos(ΔE)) + r0_mag * (a) / (μ) * sin(ΔE)
r = a + (r0_mag - a) * cos(ΔE) + σ0 * (a) * sin(ΔE)
Ft = -(a)*(μ) / (r*r0_mag) * sin(ΔE)
Gt = 1 - a/r * (1-cos(ΔE))
else # Hyperbolic or Parabolic
ΔN = (μ) / sqrt(-a^3) * t/2
ΔH = 0
ΔH_new = t/2 < 0 ? -1 : 1
while abs(ΔH - ΔH_new) > 1e-10
ΔH = ΔH_new
F = -ΔN - ΔH + σ0 / (-a) * (cos(ΔH)-1) + coeff * sin(ΔH)
dF = -1 + σ0 / (-a) * sin(ΔH) + coeff * cos(ΔH)
d2F = σ0 / (-a) * cos(ΔH) + coeff * sin(ΔH)
sign = dF >= 0 ? 1 : -1
ΔH_new = ΔH - 5*F / ( dF + sign * (abs((5-1)^2*dF^2 - 5*(5-1)*F*d2F )))
end
F = 1 - a/r0_mag * (1-cos(ΔH))
G = a * σ0/ (μ) * (1-cos(ΔH)) + r0_mag * (-a) / (μ) * sin(ΔH)
r = a + (r0_mag - a) * cos(ΔH) + σ0 * (-a) * sin(ΔH)
Ft = -(-a)*(μ) / (r*r0_mag) * sin(ΔH)
Gt = 1 - a/r * (1-cos(ΔH))
end
# add the thrust vector
x,y,z,dx,dy,dz = [F*[x,y,z] + G*[dx,dy,dz]; Ft*[x,y,z] + Gt*[dx,dy,dz] + [Tx, Ty, Tz]]
#perform again
r0_mag = (x^2 + y^2 + z^2)
v0_mag = (dx^2 + dy^2 + dz^2)
σ0 = ([x, y, z] [dx, dy, dz])/(μ)
a = 1 / ( 2/r0_mag - v0_mag^2/μ )
coeff = 1 - r0_mag/a
if a > 0 # Elliptical
ΔM = ΔE_new = (μ) / sqrt(a^3) * t/2
ΔE = 1000
while abs(ΔE - ΔE_new) > 1e-10
ΔE = ΔE_new
F = ΔE - ΔM + σ0 / (a) * (1-cos(ΔE)) - coeff * sin(ΔE)
dF = 1 + σ0 / (a) * sin(ΔE) - coeff * cos(ΔE)
d2F = σ0 / (a) * cos(ΔE) + coeff * sin(ΔE)
sign = dF >= 0 ? 1 : -1
ΔE_new = ΔE - 5*F / ( dF + sign * (abs((5-1)^2*dF^2 - 5*(5-1)*F*d2F )))
end
F = 1 - a/r0_mag * (1-cos(ΔE))
G = a * σ0/ (μ) * (1-cos(ΔE)) + r0_mag * (a) / (μ) * sin(ΔE)
r = a + (r0_mag - a) * cos(ΔE) + σ0 * (a) * sin(ΔE)
Ft = -(a)*(μ) / (r*r0_mag) * sin(ΔE)
Gt = 1 - a/r * (1-cos(ΔE))
else # Hyperbolic or Parabolic
ΔN = (μ) / sqrt(-a^3) * t/2
ΔH = 0
ΔH_new = t/2 < 0 ? -1 : 1
while abs(ΔH - ΔH_new) > 1e-10
ΔH = ΔH_new
F = -ΔN - ΔH + σ0 / (-a) * (cos(ΔH)-1) + coeff * sin(ΔH)
dF = -1 + σ0 / (-a) * sin(ΔH) + coeff * cos(ΔH)
d2F = σ0 / (-a) * cos(ΔH) + coeff * sin(ΔH)
sign = dF >= 0 ? 1 : -1
ΔH_new = ΔH - 5*F / ( dF + sign * (abs((5-1)^2*dF^2 - 5*(5-1)*F*d2F )))
end
F = 1 - a/r0_mag * (1-cos(ΔH))
G = a * σ0/ (μ) * (1-cos(ΔH)) + r0_mag * (-a) / (μ) * sin(ΔH)
r = a + (r0_mag - a) * cos(ΔH) + σ0 * (-a) * sin(ΔH)
Ft = -(-a)*(μ) / (r*r0_mag) * sin(ΔH)
Gt = 1 - a/r * (1-cos(ΔH))
end
return [F*[x,y,z] + G*[dx,dy,dz]; Ft*[x,y,z] + Gt*[dx,dy,dz]]
end