Compare commits
10 Commits
e36b99b84c
...
452afb935d
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
452afb935d | ||
|
|
5b6656a9a6 | ||
|
|
0fb875c777 | ||
|
|
30fc2fbac8 | ||
|
|
e731ed16f5 | ||
|
|
aed8f2d78b | ||
|
|
5329d15067 | ||
|
|
298eb38ff1 | ||
|
|
d00b977581 | ||
|
|
fca9f32ea7 |
@@ -1,11 +1,10 @@
|
||||
\chapter{Algorithm Overview} \label{algorithm}
|
||||
|
||||
This thesis will attempt to develop an algorithm for the preliminary analysis of feasibility in
|
||||
designing a low-thrust interplanetary mission to an outer planet by leveraging a monotonic basin
|
||||
hopping algorithm. In this section, we will review the actual execution of the algorithm
|
||||
developed. As an overview, the routine was designed to enable the determination of an optimized
|
||||
spacecraft trajectory from the selection of some very basic mission parameters. Those parameters
|
||||
include:
|
||||
This thesis focuses on designing a low-thrust interplanetary mission to an outer planet by
|
||||
leveraging a monotonic basin hopping algorithm. This section will review the actual execution of
|
||||
the algorithm developed. As an overview, the routine is designed to enable the determination of
|
||||
an optimal spacecraft trajectory that minimizes propellant usage and $C_3$ from the selection of
|
||||
some very basic parameters. Those parameters include:
|
||||
|
||||
\begin{itemize}
|
||||
\setlength\itemsep{-0.5em}
|
||||
@@ -25,7 +24,7 @@
|
||||
\end{itemize}
|
||||
|
||||
Which allows for an automated approach to optimization of the trajectory, while still providing
|
||||
the mission designer with the flexibility to choose the particular flyby planets to investigate.
|
||||
the designer with the flexibility to choose the particular flyby planets to investigate.
|
||||
|
||||
This is achieved via an optimal control problem in which the ``inner loop'' involves solving a
|
||||
TPBVP to find the optimal solution given a suitable initial guess. Then an ``outer loop''
|
||||
@@ -88,9 +87,13 @@
|
||||
In this formulation the cost function $F$ is a user provided function of the input Guess.
|
||||
The constraint function $G$ defines the following conditions that must be met:
|
||||
|
||||
\begin{spacing}{1.0}
|
||||
\begin{itemize}
|
||||
\setlength\itemsep{-0.5em}
|
||||
\item For every phase other than the final:
|
||||
\vspace{-0.5em}
|
||||
\begin{itemize}
|
||||
\setlength\itemsep{0em}
|
||||
\item The minimum periapsis of the hyperbolic flyby arc must be above some
|
||||
user-specified minimum safe altitude.
|
||||
\item The magnitude of the incoming hyperbolic velocity must match the magnitude
|
||||
@@ -99,16 +102,19 @@
|
||||
at the end of the phase.
|
||||
\end{itemize}
|
||||
\item For the final phase:
|
||||
\vspace{-0.5em}
|
||||
\begin{itemize}
|
||||
\setlength\itemsep{0em}
|
||||
\item The spacecraft position must match the planet's position (within bounds)
|
||||
at the end of the phase.
|
||||
\item The final mass must be greater than the dry mass of the craft.
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{spacing}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{flowcharts/nlp}
|
||||
\includegraphics[width=\textwidth]{LaTeX/flowcharts/nlp}
|
||||
\caption{A flowchart of the TPBVP Solution Approach}
|
||||
\label{nlp}
|
||||
\end{figure}
|
||||
@@ -126,12 +132,11 @@
|
||||
The following pseudo-code outlines the approach taken for the elliptical case. The
|
||||
approach is quite similar when $a<0$:
|
||||
|
||||
% TODO: Some symbols here aren't recognized by the font
|
||||
\begin{singlespacing}
|
||||
\begin{verbatim}
|
||||
i = 0
|
||||
# First declare some useful variables from the state
|
||||
sig0 = (position ⋅ velocity) / √(mu)
|
||||
sig0 = dot(position, velocity) / √(mu)
|
||||
a = 1 / ( 2/norm(position) - norm(velocity)^2/mu )
|
||||
coeff = 1 - norm(position)/a
|
||||
|
||||
@@ -171,13 +176,13 @@
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{fig/laguerre_plot}
|
||||
\includegraphics[width=\textwidth]{LaTeX/fig/laguerre_plot}
|
||||
\caption{Example of a natural trajectory propagated via the Laguerre-Conway
|
||||
approach to solving Kepler's Problem}
|
||||
\label{laguerre_plot}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Sims-Flanagan Propagator}
|
||||
\subsection{Propagating with Sims-Flanagan Transcription}
|
||||
|
||||
Until this point, we've not yet discussed how best to model the low-thrust
|
||||
trajectory arcs themselves. The Laguerre-Conway algorithm efficiently determines
|
||||
@@ -197,7 +202,7 @@
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{fig/spiral_plot}
|
||||
\includegraphics[width=\textwidth]{LaTeX/fig/spiral_plot}
|
||||
\caption{An example trajectory showing that classic continuous-thrust orbit
|
||||
shapes, such as this orbit spiral, are easily achievable using a Sims-Flanagan
|
||||
model}
|
||||
@@ -221,16 +226,23 @@
|
||||
and the mass flow rate (a function of the duty cycle percentage ($d$), thrust ($f$),
|
||||
and the specific impulse of the thruster ($I_{sp}$), commonly used to measure
|
||||
efficiency)\cite{sutton2016rocket}:
|
||||
|
||||
\begin{equation}
|
||||
\Delta m = \Delta t \frac{f d}{I_{sp} g_0}
|
||||
\end{equation}
|
||||
|
||||
Where $\Delta m$ is the fuel used in the sub-trajectory, $\Delta t$ is the time of
|
||||
flight of the sub-trajectory, and $g_0$ is the standard gravity at the surface of
|
||||
Earth. From knowledge of the mass flow rate, we can then decrement the mass
|
||||
appropriately based on the magnitude of the thrust vector at each point.
|
||||
|
||||
In the implementation provided in this thesis, a Sims-Flanagan $n$ value of 20 was
|
||||
chosen for each of the phases. This value, as tested by
|
||||
Englander\cite{englander2012automated}, is sufficient for trajectories that maintain a
|
||||
reasonably small number of solar revolutions. In the future, a more intelligent solution
|
||||
could be to determine, roughly, the number of revolutions around the sun that the orbit
|
||||
will likely take (perhaps by using the period of the orbit at the beginning of the
|
||||
propagation and the time of flight), and scaling $n$ according to the number of
|
||||
revolutions.
|
||||
|
||||
\subsection{Non-Linear Problem Solver}
|
||||
|
||||
Now that we have the basic building blocks of a continuous-thrust trajectory, we can
|
||||
@@ -257,7 +269,7 @@
|
||||
\item The $v_{\infty,in}$ vector representing excess velocity at the
|
||||
planetary flyby (or completion of mission) at the end of the phase
|
||||
\item The time of flight for the phase
|
||||
\item The unit-thrust profile in a sun-fixed frame represented by a
|
||||
\item The unit-thrust profile in a sun-centered frame represented by a
|
||||
series of vectors with each element ranging from 0 to 1.
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
@@ -265,10 +277,9 @@
|
||||
|
||||
From this information, as can be seen in Figure~\ref{nlp}, we can formulate the mission
|
||||
in terms of a non-linear programming problem. Specifically, the variables describing the
|
||||
trajectory contained within the Guess object can be represented as an input vector,
|
||||
$\vec{x}$, the cost function produced by an entire trajectory propagation as $F$, and
|
||||
the constraints that the trajectory must satisfy as another function $\vec{G}$ such that
|
||||
$\vec{G}(\vec{x}) = \vec{0}$.
|
||||
trajectory from the free variable, $\vec{x}$, the cost function produced by an entire
|
||||
trajectory propagation, $F$, and the constraints that the trajectory must satisfy as
|
||||
another function $\vec{G}$ such that $\vec{G}(\vec{x}) = \vec{0}$.
|
||||
|
||||
This is a format that we can apply directly to the IPOPT solver, which Julia (the
|
||||
programming language used) can utilize via bindings supplied by the SNOW.jl
|
||||
@@ -318,7 +329,7 @@
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{flowcharts/mbh}
|
||||
\includegraphics[width=\textwidth]{LaTeX/flowcharts/mbh}
|
||||
\caption{A flowchart visualizing the steps in the monotonic basin hopping
|
||||
algorithm}
|
||||
\label{mbh_flow}
|
||||
@@ -326,12 +337,12 @@
|
||||
|
||||
\subsection{Random Trajectory Generation}\label{random_gen_section}
|
||||
|
||||
At a basic level, the algorithm needs to produce a guess (represented by all of the
|
||||
values described in Section~\ref{inner_loop_section}) that contains random values within
|
||||
reasonable bounds in the space. However, that still leaves the determination of which
|
||||
distribution function to use for the random values over each of those variables, which
|
||||
bounds to use, as well as the possibilities for any improvements to a purely random
|
||||
search.
|
||||
At a basic level, the algorithm needs to produce a guess for the free variable vector
|
||||
(represented by all of the values described in Section~\ref{inner_loop_section}) that
|
||||
contains random values within reasonable bounds in the space. However, that still leaves
|
||||
the determination of which distribution function to use for the random values over each
|
||||
of those variables, which bounds to use, as well as the possibilities for any
|
||||
improvements to a purely random search.
|
||||
|
||||
Currently, the first value set for the mission guess is that of $n$, which is the
|
||||
number of sub-trajectories that each arc will be broken into for the Sims-Flanagan
|
||||
@@ -365,18 +376,18 @@
|
||||
missions with more flybys.
|
||||
|
||||
Then, the internal components for each phase are generated. It is at this step, that
|
||||
the mission guess generator splits the outputs into two separate outputs. The first
|
||||
the trajectory guess generator splits the outputs into two separate outputs. The first
|
||||
is meant to be truly random, as is generally used as input for a monotonic basin
|
||||
hopping algorithm. The second utilizes a Lambert's solver to determine the
|
||||
appropriate hyperbolic velocities (both in and out) at each flyby to generate a
|
||||
natural trajectory arc. For this Lambert's case, the mission guess is simply seeded
|
||||
natural trajectory arc. For this Lambert's case, the trajectory guess is simply seeded
|
||||
with zero thrust controls and outputted to the monotonic basin hopper. The intention
|
||||
here is that if the time of flights are randomly chosen so as to produce a
|
||||
trajectory that is possible with a control in the vicinity of a natural trajectory,
|
||||
we want to be sure to find that trajectory. More detail on how this is handled is
|
||||
available in Section~\ref{mbh_subsection}.
|
||||
|
||||
However, for the truly random mission guess, there are still the $v_\infty$ values
|
||||
However, for the truly random trajectory guess, there are still the $v_\infty$ values
|
||||
and the initial thrust guesses to generate. For each of the phases, the incoming
|
||||
excess hyperbolic velocity is calculated in much the same way that the launch
|
||||
velocity was calculated. However, instead of multiplying the randomly generate unit
|
||||
@@ -390,18 +401,12 @@
|
||||
non-powered flyby.
|
||||
|
||||
From these two velocity vectors the turning angle, and thus the periapsis of the flyby,
|
||||
can then be calculated by Equation~\ref{turning_angle_eq} and the following equation:
|
||||
|
||||
\begin{equation}
|
||||
r_p = \frac{\mu}{\vec{v}_{\infty,in} \cdot \vec{v}_{\infty,out}} \cdot \left(
|
||||
\frac{1}{\sin(\delta/2)} - 1 \right)
|
||||
\end{equation}
|
||||
|
||||
If this radius of periapse is then found to be less than the minimum safe radius
|
||||
(currently set to the radius of the planet plus 100 kilometers), then the process is
|
||||
repeated with new random flyby velocities until a valid seed flyby is found. These
|
||||
checks are also performed each time a mission is perturbed or generated by the NLP
|
||||
solver.
|
||||
can then be calculated by Equation~\ref{turning_angle_eq} and
|
||||
Equation~\ref{periapsis_eq}. If this radius of periapse is then found to be less than
|
||||
the minimum safe radius (currently set to the radius of the planet plus 100 kilometers),
|
||||
then the process is repeated with new random flyby velocities until a valid seed flyby
|
||||
is found. These checks are also performed each time a mission is perturbed or generated
|
||||
by the NLP solver.
|
||||
|
||||
The final requirement then, is the thrust controls, which are actually quite simple.
|
||||
Since the thrust is defined as a 3-vector of values between -1 and 1 representing some
|
||||
@@ -438,15 +443,24 @@
|
||||
generator produces two random missions as described in
|
||||
Section~\ref{random_gen_section} that differ only in that one contains random flyby
|
||||
velocities and control thrusts and the other contains Lambert's-solved flyby
|
||||
velocities and zero control thrusts. For each of these guesses, the NLP solver is
|
||||
called. If either of these mission guesses have converged onto a valid solution, the
|
||||
lower loop, the ``drill loop'' is entered for the valid solution. After the
|
||||
convergence checks and potentially drill loops are performed, if a valid solution
|
||||
has been found, this solution is stored in an archive. If the solution found is
|
||||
better than the current best solution in the archive (as determined by a
|
||||
user-provided cost function of fuel usage, $C_3$ at launch, and $v-\infty$ at
|
||||
arrival) then the new solution replaces the current best solution and the loop is
|
||||
repeated. Taken by itself, the search loop should quickly generate enough random
|
||||
velocities and zero control thrusts.
|
||||
|
||||
The choice of adding a ``Lambert's solution-seeded'' random mission is an attempt to
|
||||
improve upon previous low-thrust MBH iterations by more intelligently choosing some of
|
||||
the initial guesses. Because the majority of the initial guesses that are truly random
|
||||
don't converge, this provides a greater number of valid initial guesses for the MBH
|
||||
algorithm to use to find better trajectories. However, each MBH loop does then take
|
||||
twice the time, which increases the amount of time required to truly traverse the entire
|
||||
space.
|
||||
|
||||
For each of these guesses, the NLP solver is called. If either of these mission guesses
|
||||
have converged onto a valid solution, the lower loop, the ``drill loop'' is entered for
|
||||
the valid solution. After the convergence checks and potentially drill loops are
|
||||
performed, if a valid solution has been found, this solution is stored in an archive. If
|
||||
the solution found is better than the current best solution in the archive (as
|
||||
determined by a user-provided cost function of fuel usage, $C_3$ at launch, and
|
||||
$v-\infty$ at arrival) then the new solution replaces the current best solution and the
|
||||
loop is repeated. Taken by itself, the search loop should quickly generate enough random
|
||||
mission guesses to find all ``basins'' or areas in the solution space with valid
|
||||
trajectories, but never attempts to more thoroughly explore the space around valid
|
||||
solutions within these basins.
|
||||
@@ -470,14 +484,11 @@
|
||||
Because of this, the perturbation used in this implementation follows a
|
||||
bi-directional, long-tailed Pareto distribution generated by the following
|
||||
probability density function\cite{englander2014tuning}:
|
||||
|
||||
\begin{equation}
|
||||
1 +
|
||||
\left[ \frac{s}{\epsilon} \right] \cdot
|
||||
\left[ \frac{\alpha - 1}{\frac{\epsilon}{\epsilon + r}^{-\alpha}} \right]
|
||||
\end{equation}
|
||||
|
||||
\noindent
|
||||
Where $s$ is a random array of signs (either plus one or minus one) with dimension
|
||||
equal to the perturbed variable and bounds of -1 and 1, $r$ is a uniformly
|
||||
distributed random array with dimension equal to the perturbed variable and bounds
|
||||
@@ -496,4 +507,25 @@
|
||||
iterations to perform without improvement in a row before ending the drill loop.
|
||||
This process can be repeated essentially ''search patience`` number of times in
|
||||
order to fully traverse all basins.
|
||||
|
||||
It is worth validating whether the described Monotonic Basin Hopping algorithm
|
||||
actually provides significant improvements in global cost-function minimization over
|
||||
a single NLP-optimization run for the particular problem of low-thrust
|
||||
interplanetary trajectories. Therefore, a simple sample Earth to Saturn trajectory
|
||||
was selected and every single valid trajectory discovered by the MBH algorithm was
|
||||
stored. In Figure~\ref{mbh_analysis}, the cost function values for each of these
|
||||
valid trajectories is plotted in the order in which they were found. The line
|
||||
indicates the minimum cost function discovered until that point in time. This
|
||||
validates that the MBH, over sufficient number of iterations, will find optimal
|
||||
values that the NLP optimization scheme could not discover on its own. It is also
|
||||
worth noting that the ``basin drilling'' feature of the MBH scheme can be clearly
|
||||
seen in the plot, where the algorithm continues to improve its own ``basin-best''
|
||||
until it no longer can do so over a number of attempts.
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{LaTeX/fig/mbh_analysis}
|
||||
\caption{MBH cost function reduction over iterative updates}
|
||||
\label{mbh_analysis}
|
||||
\end{figure}
|
||||
|
||||
|
||||
40
LaTeX/conclusion.tex
Normal file
@@ -0,0 +1,40 @@
|
||||
\chapter{Conclusion} \label{conclusion}
|
||||
|
||||
This thesis explored an approach for automating the initial analysis and discovery of useful
|
||||
interplanetary, low-thrust trajectories including the difficult task of optimizing the flyby
|
||||
parameters. This makes the mission designer's job significantly simpler in that they can
|
||||
simply explore a number of different flyby selection options in order to get a good
|
||||
understanding of the mission scope and search space for a given spacecraft, launch window,
|
||||
and target. The aim of this exploration was to examine whether a Monotonic Basin Hopping
|
||||
algorithm utilizing an inner-loop NLP solver would be an appropriate choice for the
|
||||
particular problem of low-thrust interplanetary trajectory optimization.
|
||||
|
||||
In performing this examination, two results were selected for further analysis. These
|
||||
results are outlined in Table~\ref{results_table}. As can be seen in the table, both
|
||||
resulting trajectories have trade-offs in mission length, launch energy, fuel usage, and
|
||||
more. Each of these trajectories appear to be within the capabilities of existing launch
|
||||
vehicles in terms of $C_3$.
|
||||
|
||||
In the course of producing this algorithm, a large number of improvement possibilities were
|
||||
noted. This work was based, in large part, on the work of Jacob Englander in a number of
|
||||
papers\cite{englander2014tuning}\cite{englander2017automated} \cite{englander2012automated}
|
||||
in which they explored the hybrid optimal control problem of multi-objective low-thrust
|
||||
interplanetary trajectories.
|
||||
|
||||
In light of this, there are a number of additional approaches that Englander took in
|
||||
preparing their algorithm that were not implemented here in favor of reducing complexity and
|
||||
time constraints. For instance, many of the Englander papers explore the concept of an outer
|
||||
loop that utilizes a genetic algorithm to compare many different flyby planet choices
|
||||
against each other.
|
||||
|
||||
Further improvements, in the name of performance stem from the field of computer science. An
|
||||
evolutionary algorithm such as the one proposed by Englander would benefit from high levels
|
||||
of parallelization. Therefore, it would be worth considering a GPU-accelerated or even
|
||||
cluster-computing capable implementation of the monotonic basin hopping algorithm.
|
||||
|
||||
Finally, the monotonic basin hopping algorithm as currently written provides no guarantees
|
||||
of actual global optimization. Generally optimization is achieved by running the algorithm
|
||||
until it fails to produce newer, better trajectories for a sufficiently long time. But it
|
||||
would be worth investigating the robustness of the NLP solver as well as the robustness of
|
||||
the MBH algorithm basin drilling procedures in order to quantify the search granularity
|
||||
needed to completely traverse the search space.
|
||||
|
Before Width: | Height: | Size: 68 KiB After Width: | Height: | Size: 66 KiB |
|
Before Width: | Height: | Size: 70 KiB After Width: | Height: | Size: 72 KiB |
|
Before Width: | Height: | Size: 41 KiB After Width: | Height: | Size: 43 KiB |
BIN
LaTeX/fig/EMJS_thrust_components_vnb.png
Normal file
|
After Width: | Height: | Size: 80 KiB |
|
Before Width: | Height: | Size: 39 KiB After Width: | Height: | Size: 36 KiB |
|
Before Width: | Height: | Size: 64 KiB After Width: | Height: | Size: 63 KiB |
|
Before Width: | Height: | Size: 61 KiB After Width: | Height: | Size: 64 KiB |
|
Before Width: | Height: | Size: 44 KiB After Width: | Height: | Size: 42 KiB |
BIN
LaTeX/fig/EMS_thrust_components_vnb.png
Normal file
|
After Width: | Height: | Size: 72 KiB |
|
Before Width: | Height: | Size: 42 KiB After Width: | Height: | Size: 38 KiB |
BIN
LaTeX/fig/bepicolombo.png
Normal file
|
After Width: | Height: | Size: 206 KiB |
BIN
LaTeX/fig/cassini.png
Normal file
|
After Width: | Height: | Size: 173 KiB |
BIN
LaTeX/fig/mbh_analysis.png
Normal file
|
After Width: | Height: | Size: 113 KiB |
BIN
LaTeX/fig/thrust_angle.png
Normal file
|
After Width: | Height: | Size: 7.2 KiB |
226
LaTeX/fig/thrust_angle.svg
Normal file
@@ -0,0 +1,226 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
width="210mm"
|
||||
height="297mm"
|
||||
viewBox="0 0 210 297"
|
||||
version="1.1"
|
||||
id="svg5"
|
||||
inkscape:version="1.1.2 (0a00cf5339, 2022-02-04, custom)"
|
||||
sodipodi:docname="thrust_angle.svg"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:svg="http://www.w3.org/2000/svg">
|
||||
<sodipodi:namedview
|
||||
id="namedview7"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pagecheckerboard="0"
|
||||
inkscape:document-units="mm"
|
||||
showgrid="false"
|
||||
showborder="false"
|
||||
inkscape:snap-object-midpoints="true"
|
||||
inkscape:zoom="3.0823513"
|
||||
inkscape:cx="270.08602"
|
||||
inkscape:cy="226.28829"
|
||||
inkscape:window-width="1912"
|
||||
inkscape:window-height="1040"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="32"
|
||||
inkscape:window-maximized="1"
|
||||
inkscape:current-layer="layer1" />
|
||||
<defs
|
||||
id="defs2">
|
||||
<marker
|
||||
style="overflow:visible;"
|
||||
id="marker2450"
|
||||
refX="0.0"
|
||||
refY="0.0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
transform="scale(0.4) rotate(180) translate(10,0)"
|
||||
style="fill-rule:evenodd;fill:context-stroke;stroke:context-stroke;stroke-width:1.0pt;"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
id="path2448" />
|
||||
</marker>
|
||||
<marker
|
||||
style="overflow:visible"
|
||||
id="Arrow1Mstart"
|
||||
refX="0.0"
|
||||
refY="0.0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Mstart"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
transform="scale(0.4) translate(10,0)"
|
||||
style="fill-rule:evenodd;fill:context-stroke;stroke:context-stroke;stroke-width:1.0pt"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
id="path1415" />
|
||||
</marker>
|
||||
<marker
|
||||
style="overflow:visible;"
|
||||
id="Arrow1Mend"
|
||||
refX="0.0"
|
||||
refY="0.0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
transform="scale(0.4) rotate(180) translate(10,0)"
|
||||
style="fill-rule:evenodd;fill:context-stroke;stroke:context-stroke;stroke-width:1.0pt;"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
id="path1418" />
|
||||
</marker>
|
||||
<marker
|
||||
style="overflow:visible;"
|
||||
id="Arrow1Lend"
|
||||
refX="0.0"
|
||||
refY="0.0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Lend"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
transform="scale(0.8) rotate(180) translate(12.5,0)"
|
||||
style="fill-rule:evenodd;fill:context-stroke;stroke:context-stroke;stroke-width:1.0pt;"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
id="path1412" />
|
||||
</marker>
|
||||
</defs>
|
||||
<g
|
||||
inkscape:label="Layer 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1">
|
||||
<circle
|
||||
style="fill:#000000;stroke:#000000;stroke-width:0.520999;stroke-linecap:round"
|
||||
id="path846"
|
||||
cx="78.636162"
|
||||
cy="86.182404"
|
||||
r="1.0282457" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:none;marker-end:url(#marker2450)"
|
||||
d="M 78.636161,86.182403 V 35.76552"
|
||||
id="path2163" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:none;marker-end:url(#marker2450)"
|
||||
d="M 78.636161,86.182403 103.24016,61.578407"
|
||||
id="path2278" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:none;marker-end:url(#marker2450)"
|
||||
d="M 78.636161,86.182403 34.533318,74.365082"
|
||||
id="path2280" />
|
||||
<path
|
||||
style="fill:none;stroke:#ff0000;stroke-width:0.6;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker2450)"
|
||||
d="M 78.636161,86.182403 55.079978,43.543193"
|
||||
id="path2282"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<path
|
||||
style="fill:none;stroke:#ff0000;stroke-width:0.3;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:0.3,0.3;stroke-dashoffset:0"
|
||||
d="M 78.636161,86.182403 54.721836,70.081134"
|
||||
id="path2286" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
d="m 56.141209,80.228846 c 0,0 -2.270866,-5.042291 7.398176,-4.194047"
|
||||
id="path2545" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
d="m 63.539385,76.034799 c 0,0 -2.85624,-7.976354 4.024622,-9.938026"
|
||||
id="path2660" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
d="m 61.134738,74.440568 c 0,0 -2.576589,-7.072128 5.405424,-10.345661"
|
||||
id="path2662" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:4.23333px;line-height:1.25;font-family:sans-serif;stroke-width:0.264583"
|
||||
x="105.1789"
|
||||
y="59.616859"
|
||||
id="text5950"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan5948"
|
||||
style="stroke-width:0.264583"
|
||||
x="105.1789"
|
||||
y="59.616859">r</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:4.23333px;line-height:1.25;font-family:sans-serif;stroke-width:0.264583"
|
||||
x="77.378998"
|
||||
y="33.542519"
|
||||
id="text8960"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan8958"
|
||||
style="stroke-width:0.264583"
|
||||
x="77.378998"
|
||||
y="33.542519">h</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:4.23333px;line-height:1.25;font-family:sans-serif;stroke-width:0.264583"
|
||||
x="29.955662"
|
||||
y="74.996872"
|
||||
id="text12198"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan12196"
|
||||
style="stroke-width:0.264583"
|
||||
x="29.955662"
|
||||
y="74.996872">θ</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:4.23333px;line-height:1.25;font-family:sans-serif;stroke-width:0.264583"
|
||||
x="53.598591"
|
||||
y="76.51889"
|
||||
id="text32530"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan32528"
|
||||
style="stroke-width:0.264583"
|
||||
x="53.598591"
|
||||
y="76.51889">α</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:4.23333px;line-height:1.25;font-family:sans-serif;stroke-width:0.264583"
|
||||
x="58.892441"
|
||||
y="66.168266"
|
||||
id="text38018"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan38016"
|
||||
style="stroke-width:0.264583"
|
||||
x="58.892441"
|
||||
y="66.168266">β</tspan></text>
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
d="m 105.21678,56.69539 0.92033,-1.115951 0.86649,1.056716"
|
||||
id="path40461" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
d="m 77.795012,29.236892 0.92033,-1.115951 0.86649,1.056716"
|
||||
id="path40461-6" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
d="m 30.254464,70.925813 0.92033,-1.115951 0.86649,1.056716"
|
||||
id="path40461-7" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:4.23333px;line-height:1.25;font-family:sans-serif;stroke-width:0.264583"
|
||||
x="51.783405"
|
||||
y="40.3876"
|
||||
id="text44510"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan44508"
|
||||
style="stroke-width:0.264583"
|
||||
x="51.783405"
|
||||
y="40.3876">F</tspan></text>
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
d="M 51.599761,36.292107 H 54.15286 L 53.502877,35.310574"
|
||||
id="path47813" />
|
||||
<path
|
||||
style="fill:none;stroke:#ff0000;stroke-width:0.3;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:0.3,0.3;stroke-dashoffset:0"
|
||||
d="m 54.721836,70.081134 0.03089,-27.183389"
|
||||
id="path47928" />
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 8.6 KiB |
BIN
LaTeX/fig/voyager.jpg
Normal file
|
After Width: | Height: | Size: 39 KiB |
@@ -1,16 +1,16 @@
|
||||
\chapter{Introduction}
|
||||
|
||||
Continuous low-thrust engines utilizing technologies such as Ion propulsion, Hall thrusters, and
|
||||
others can be a powerful system in the enabling of long-range interplanetary missions with fuel
|
||||
efficiencies unrivaled by those that employ only impulsive thrust systems. The challenge in
|
||||
utilizing these systems, then, is the design of trajectories that effectively utilize this
|
||||
technology. Continuous thrust propulsive systems tend to be particularly suited to missions
|
||||
which require very high total change in velocity ($\Delta V$) values and take place over a
|
||||
particularly long duration. Traditional impulsive thrusting techniques can achieve these changes
|
||||
in velocity, but typically have a far lower specific impulse and, as such, are much less fuel
|
||||
efficient, costing the mission valuable financial resources that could instead be used for
|
||||
science. Because of their inherently high specific impulse (and thus efficiency), low-thrust
|
||||
propagation systems are well-suited to interplanetary missions.
|
||||
others enable long-range interplanetary missions with fuel efficiencies unrivaled by those that
|
||||
employ only impulsive thrust systems. The challenge in utilizing these systems, then, is the
|
||||
design of trajectories that effectively utilize this technology. Continuous thrust propulsive
|
||||
systems tend to be particularly suited to missions which require very high total change in
|
||||
velocity ($\Delta V$) values and take place over a particularly long duration. Traditional
|
||||
impulsive thrusting techniques can achieve these changes in velocity, but typically have a far
|
||||
lower specific impulse and, as such, are much less fuel efficient, costing the mission valuable
|
||||
financial resources that could instead be used for science. Because of their inherently high
|
||||
specific impulse (and thus efficiency), low-thrust propulsion systems are well-suited to
|
||||
interplanetary missions.
|
||||
|
||||
The first attempt by NASA to use an electric ion-thruster for an interplanetary mission was the
|
||||
Deep Space 1 mission\cite{brophy2002}. This mission was designed to test the ``new'' technology,
|
||||
@@ -29,16 +29,15 @@
|
||||
in October 2018 and is projected to perform a flyby of Earth, two of Venus, and six of
|
||||
Mercury before inserting into an orbit around that planet.
|
||||
|
||||
A common theme in mission design is that there always exists a trade-off between efficiency
|
||||
(particularly in terms of fuel use) and the time required to achieve the mission objective. Low
|
||||
thrust systems in particular tend to produce mission profiles that sacrifice the rate of
|
||||
convergence on the target state in order to achieve large increases in fuel efficiency. Often a
|
||||
low-thrust mission profile in Earth orbit will require multiple orbital periods to achieve the
|
||||
desired change in spacecraft state. Interplanetary missions, though, provide a particularly
|
||||
useful case for continuous thrust technology. The trajectory arcs in interplanetary space are
|
||||
generally much, much longer than orbital missions around the Earth. Because of this increase,
|
||||
even a small continuous thrust is capable of producing large $\Delta V$ values over the course
|
||||
of a single trajectory arc.
|
||||
A common theme in mission design is that there is a trade-off between efficiency (particularly
|
||||
in terms of fuel use) and the time required to achieve the mission objective. Low thrust systems
|
||||
in particular tend to produce mission profiles that sacrifice the rate of convergence on the
|
||||
target state in order to achieve large increases in fuel efficiency. Often a low-thrust transfer
|
||||
in Earth orbit will require multiple orbital periods to achieve the desired change in spacecraft
|
||||
state. Interplanetary missions, though, provide a particularly useful case for continuous thrust
|
||||
technology. The trajectory arcs in interplanetary space are generally much, much longer than
|
||||
orbital missions around the Earth. Because of this increase, even a small continuous thrust is
|
||||
capable of producing large $\Delta V$ values over the course of a single trajectory arc.
|
||||
|
||||
Another technique often leveraged by interplanetary trajectory designers is the gravity assist.
|
||||
Gravity assists utilize the inertia of a large planetary body to ``slingshot'' a spacecraft,
|
||||
@@ -58,24 +57,22 @@
|
||||
routine for producing unconstrained, globally optimal trajectories for realistic interplanetary
|
||||
mission development that utilizes both planetary flybys and efficient low-thrust electric
|
||||
propulsion techniques. Similar studies have also been performed by a number of researchers
|
||||
including a team from JPL\cite{sims2006} as well as a Spanish team\cite{morante}, among several
|
||||
others.
|
||||
including a team from JPL\cite{sims2006}, among several others\cite{morante}.
|
||||
|
||||
This thesis will attempt to develop an algorithm for the optimization of low-thrust enabled
|
||||
trajectories for initial feasibility analysis in mission design. The algorithm will utilize
|
||||
a non-linear programming solver to directly optimize a set of control thrusts for the
|
||||
user-provided flyby planets, for any provided cost function. A monotonic basin hopping algorithm
|
||||
(MBH) will then be employed to traverse the search space in an effort to find additional local
|
||||
optima. This approach differs from the work produced earlier by Englander and the other teams,
|
||||
but is largely meant to explore the feasibility of such techniques and propose a few
|
||||
enhancements. The approach defined in this thesis will then be used to investigate an example
|
||||
mission to Saturn.
|
||||
This thesis focuses on optimization of low-thrust enabled trajectories that use gravity assists.
|
||||
The approach uses a non-linear programming solver to directly optimize a set of control thrusts
|
||||
for the user-provided flyby planets, for any provided cost function. A monotonic basin hopping
|
||||
algorithm (MBH) is then employed to traverse the search space in an effort to find additional
|
||||
local optima. This approach differs from the work produced earlier by Englander and the other
|
||||
teams, but is largely meant to explore the feasibility of such techniques and propose a few
|
||||
enhancements. The approach defined in this thesis is then used to design low thrust trajectories
|
||||
with gravity assits from the Earth to Saturn.
|
||||
|
||||
This thesis will explore these concepts in a number of different sections. Section
|
||||
\ref{traj_dyn} will explore the basic dynamical principles of trajectory design, beginning the
|
||||
with fundamental system dynamics, then exploring interplanetary system dynamics and gravity
|
||||
flybys, and finally the dynamics that are specific to low-thrust enabled trajectories. Section
|
||||
\ref{traj_optimization} will then discuss process of optimizing spacecraft trajectories in
|
||||
general and the tool available for that. Section \ref{algorithm} will cover the implementation
|
||||
details of the optimization algorithm developed for this paper. Finally, section \ref{results}
|
||||
will explore the results of some hypothetical missions to Saturn.
|
||||
This thesis is organized as follows: Section \ref{traj_dyn} will explore the basic dynamical
|
||||
principles of trajectory design, beginning the with fundamental system dynamics, then exploring
|
||||
interplanetary system dynamics and gravity flybys, and finally the dynamics that are specific to
|
||||
low-thrust enabled trajectories. Section \ref{traj_optimization} will then discuss process of
|
||||
optimizing spacecraft trajectories in general and the tool available for that. Section
|
||||
\ref{algorithm} will cover the implementation details of the optimization algorithm developed
|
||||
for this paper. Finally, section \ref{results} will explore the results of some hypothetical
|
||||
missions to Saturn.
|
||||
|
||||
25
LaTeX/presentation.bib
Normal file
@@ -0,0 +1,25 @@
|
||||
@misc{nasa_voyager,
|
||||
title={Voyager - Mission Overview},
|
||||
url={https://voyager.jpl.nasa.gov/mission/},
|
||||
journal={NASA},
|
||||
publisher={NASA}
|
||||
}
|
||||
|
||||
@phdthesis{dhanasarCassini,
|
||||
author = {Dhanasar, Mookesh},
|
||||
year = {2005},
|
||||
month = {12},
|
||||
pages = {},
|
||||
title = {A METHOD FOR THE DESIGN AND ANALYSIS OF DEEP SPACE NUCLEAR PROPULSION SYSTEMS}
|
||||
}
|
||||
|
||||
@article{jehnBepi,
|
||||
author = {Jehn, Rüdiger and García Yárnoz, Daniel and Schoenmaekers, Johannes and Companys, Vicente},
|
||||
year = {2012},
|
||||
month = {01},
|
||||
pages = {1-9},
|
||||
title = {Trajectory Design for BepiColombo Based on Navigation Requirements},
|
||||
volume = {4},
|
||||
journal = {Journal of Aerospace Engineering, Sciences and Applications},
|
||||
doi = {10.7446/jaesa.0401.01}
|
||||
}
|
||||
608
LaTeX/presentation.tex
Normal file
@@ -0,0 +1,608 @@
|
||||
\documentclass{beamer}
|
||||
\usetheme{Antibes}
|
||||
|
||||
\usepackage{xfrac}
|
||||
|
||||
\definecolor{color1}{HTML}{3A4040}
|
||||
\definecolor{color2}{HTML}{F5F2F8}
|
||||
\definecolor{color3}{HTML}{C47B6E}
|
||||
\definecolor{color4}{HTML}{B6AD96}
|
||||
\definecolor{color5}{HTML}{B65D4E}
|
||||
|
||||
\setbeamercolor*{structure}{bg=color3,fg=color3}
|
||||
\setbeamercolor*{palette primary}{fg=color1,bg=color4}
|
||||
\setbeamercolor*{palette secondary}{fg=color1,bg=color4}
|
||||
\setbeamercolor*{palette tertiary}{fg=color1,bg=color3}
|
||||
\setbeamercolor*{palette quaternary}{fg=color1,bg=color5}
|
||||
\setbeamercolor{alerted text}{fg=color1,bg=color3}
|
||||
\setbeamercolor{titlelike}{bg=color2,fg=color1}
|
||||
\setbeamercolor*{titlelike}{bg=color2,fg=color1}
|
||||
\setbeamercolor{frametitle}{bg=color1,fg=color2}
|
||||
\setbeamercolor{background canvas}{bg=color2,fg=color2}
|
||||
|
||||
\title{Designing Optimal Low-Thrust Interplanetary Trajectories Utilizing Monotonic Basin Hopping}
|
||||
\author{Richard Connor Johnstone}
|
||||
\institute{University of Colorado -- Boulder}
|
||||
\date{\today}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{frame}
|
||||
\titlepage
|
||||
\end{frame}
|
||||
|
||||
\section{Introduction}
|
||||
|
||||
\subsection{Motivation}
|
||||
|
||||
% \begin{frame} \frametitle{Motivation}
|
||||
% How can we leverage existing technologies and techniques to determine
|
||||
% optimally-controlled trajectories to targets in interplanetary space?
|
||||
% \end{frame}
|
||||
|
||||
\note{Today I'll be discussing my research in determining optimal trajectories
|
||||
for interplanetary mission objectives. Numerous scientific and engineering advances have
|
||||
been made possible by the recognition of optimal trajectories in interplanetary space.}
|
||||
|
||||
\begin{frame} \frametitle{Voyager}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[height=0.6\paperheight]{LaTeX/fig/voyager}
|
||||
\caption{Voyager mission trajectory\cite{nasa_voyager}}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\note{For instance, the Voyagers I and II missions were launched in 1977 because of a
|
||||
once-in-a-lifetime window in which the spacecraft were able to, on a single tour, visit all
|
||||
four gas giant outer planets. These tours were only made possible because of the ability to
|
||||
compute planetary ephemeris and map out a chain of gravity assists.}
|
||||
|
||||
\begin{frame} \frametitle{Bepi-Colombo}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[height=0.6\paperheight]{LaTeX/fig/bepicolombo}
|
||||
\caption{Bepi-Colombo mission trajectory\cite{jehnBepi}}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\note{More recently, ESA has also been able to take advantage of gravity assists to send the
|
||||
spacecraft Bepi-Colombo into a trajectory that rendezvous 6 times with Mercury. While this
|
||||
mission did utilize a number of gravity assists, it also utilized another technology
|
||||
well-suited to interplanetary travel: low-thrust electric propulsion systems}
|
||||
|
||||
\subsection{Context}
|
||||
|
||||
\begin{frame} \frametitle{Low Thrust Electric Propulsion}
|
||||
Allows for some advantages in achieving more interesting mission objectives:
|
||||
\begin{itemize}
|
||||
\item Much higher thrusting efficiency (in terms of fuel usage) compared to high
|
||||
thrust propulsive systems
|
||||
\item Allows for a greater overall $\Delta V$ budget for a given mission
|
||||
\end{itemize}
|
||||
|
||||
\pause
|
||||
But requires some additional considerations:
|
||||
\begin{itemize}
|
||||
\item Requires significantly more time to achieve the same velocity change
|
||||
\item Defines a new system dynamics control, which must be accounted for
|
||||
continuously at each point in time, requiring additional computation for
|
||||
optimization
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\note{Thanks to their ability to provide thrust extremely efficiently, these low-thrust
|
||||
engines can be a powerful tool for enabling impressive scientific objectives, but they do
|
||||
provide an additional layer of complexity for the mission designer, as their continuous
|
||||
thrust nature changes the underlying system dynamics that would have been used to optimize a
|
||||
mission such as Voyager, which did not employ low-thrust engines.}
|
||||
|
||||
\begin{frame} \frametitle{Problem Statement}
|
||||
For a given low-thrust engine, spacecraft parameters, and planetary flyby selections,
|
||||
what is the optimal control thrusting profile, launch conditions, and flyby parameters
|
||||
to arrive at a target outer planet?
|
||||
\end{frame}
|
||||
|
||||
\section{Trajectory Optimization Background}
|
||||
|
||||
\subsection{System Dynamics}
|
||||
|
||||
\begin{frame} \frametitle{Dynamical Model: Two Body Problem}
|
||||
\begin{columns}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
Assumptions:
|
||||
\begin{itemize}
|
||||
\item There are only two bodies in the system
|
||||
\item The only force acting between the two bodies is gravitational
|
||||
\item The two masses are to be modeled as constant point masses
|
||||
\end{itemize}
|
||||
\end{column}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.45\paperwidth]{LaTeX/fig/2bp}
|
||||
\end{figure}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\note{In order to understand how to optimize these trajectories, we'll first have to
|
||||
understand the underlying system dynamics. I won't spend too long on this, as most of you
|
||||
should have a good grasp on spacecraft dynamics, but we'll briefly analyse the most basic
|
||||
model for spaceflight dynamics: the two body problem. This model requires us to make a
|
||||
couple of basic assumptions. First that we are only concerned with the gravitational
|
||||
influence between the nominative two bodies: the spacecraft and the planetary body around
|
||||
which it is orbiting. Secondly, both of these bodies are modeled as point masses with
|
||||
constant mass. This removes the need to account for non-uniform densities and asymmetry.}
|
||||
|
||||
\begin{frame} \frametitle{Dynamical Model: Two Body Problem}
|
||||
\begin{columns}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{align*}
|
||||
m_2 \ddot{\vec{r}}_2 &= - \frac{G m_1 m_2}{r^2} \frac{\vec{r}}{\left| r \right|} \\
|
||||
m_1 \ddot{\vec{r}}_1 &= \frac{G m_2 m_1}{r^2} \frac{\vec{r}}{\left| r \right|}
|
||||
\end{align*}
|
||||
\end{column}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.45\paperwidth]{LaTeX/fig/2bp}
|
||||
\end{figure}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\note{From Newton's second law and the law of universal gravitation, we can then model this
|
||||
force with this equation. Where...}
|
||||
|
||||
\begin{frame} \frametitle{Dynamical Model: Two Body Problem}
|
||||
\begin{columns}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{equation*}
|
||||
\ddot{\vec{r}} = \ddot{\vec{r}}_2 - \ddot{\vec{r}}_1 =
|
||||
- \frac{G \left( m_1 + m_2 \right)}{r^2} \frac{\vec{r}}{\left| r \right|}
|
||||
\end{equation*}
|
||||
\end{column}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.45\paperwidth]{LaTeX/fig/2bp}
|
||||
\end{figure}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\note{Dividing by the mass, we can derive the acceleration...}
|
||||
|
||||
\begin{frame} \frametitle{Dynamical Model: Two Body Problem}
|
||||
\begin{columns}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{align*}
|
||||
\mu &= G (m_1 + m_2) \approx G m_1 \\
|
||||
\ddot{\vec{r}} &= - \frac{\mu}{r^2} \hat{r}
|
||||
\end{align*}
|
||||
\end{column}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.45\paperwidth]{LaTeX/fig/2bp}
|
||||
\end{figure}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\note{Finally, we'll make the assumption that the mass of the spacecraft, is significantly
|
||||
smaller than the mass of the planet. This allows us to represents the gravitational
|
||||
parameter as a function of the planetary mass alone, rather than both combined. With this
|
||||
assumption, we can model the system dynamics with this analytically solvable equation}
|
||||
|
||||
\begin{frame} \frametitle{Dynamical Model: Kepler's Laws}
|
||||
\begin{itemize}
|
||||
\item Each planet's orbit is an ellipse with the Sun at one of the foci.
|
||||
\item The area swept out by the imaginary line connecting the primary and secondary
|
||||
bodies increases linearly with respect to time.
|
||||
\item The square of the orbital period is proportional to the cube of the semi-major
|
||||
axis of the orbit, regardless of eccentricity.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\note{In the early 1600s, Johannes Kepler determined three laws in order to describe the
|
||||
motion of a satellite. These are:}
|
||||
|
||||
\begin{frame} \frametitle{Dynamical Model: Kepler's Laws}
|
||||
\begin{equation*}
|
||||
r = \frac{\sfrac{h^2}{\mu}}{1 + e \cos(\theta)}
|
||||
\end{equation*}
|
||||
|
||||
\vspace{1em}
|
||||
|
||||
\begin{equation*}
|
||||
\frac{\Delta t}{T} = \frac{E - e \sin E}{2 \pi}
|
||||
\end{equation*}
|
||||
|
||||
\vspace{1em}
|
||||
|
||||
\begin{equation*}
|
||||
T = 2 \pi \sqrt{\frac{a^3}{\mu}}
|
||||
\end{equation*}
|
||||
\end{frame}
|
||||
|
||||
\note{By utilizing these laws and some geometric properties of conic sections, we can
|
||||
actually take them a step further, producing the following extremely useful equations for
|
||||
representing spacecraft motion:}
|
||||
|
||||
\begin{frame} \frametitle{Dynamical Model: Kepler's Equation}
|
||||
\begin{equation*}
|
||||
\frac{\Delta t}{T} = \frac{E - e \sin E}{2 \pi}
|
||||
\end{equation*}
|
||||
|
||||
\vspace{1em}
|
||||
|
||||
\begin{equation*}
|
||||
T = 2 \pi \sqrt{\frac{a^3}{\mu}}
|
||||
\end{equation*}
|
||||
|
||||
\vspace{1em}
|
||||
|
||||
\begin{equation*}
|
||||
M = \sqrt{\frac{\mu}{a^3}} \Delta t = E - e \sin E
|
||||
\end{equation*}
|
||||
\end{frame}
|
||||
|
||||
\note{The second of these, which we'll take particular notice of, is considered Kepler's
|
||||
equation. It provides a method for relating the time since periapsis of a satellite in an
|
||||
orbit to the satellite's position along that orbit. The solution to this equatin can then be
|
||||
used to solve for a spacecraft's position, which is very useful for direct optimization
|
||||
methods.}
|
||||
|
||||
% \note{Finally, though, we'll need to actually solve Kepler's equation. For this purpose
|
||||
% we'll use a generic root-finding method first proposed by Laguerre in the 19th century.
|
||||
% Conway first explored its application on Kepler's equation in the 1980s and found it to be
|
||||
% more robust at converging to a solution, with similar convergence speed, to the more common
|
||||
% variations of the Newton-Raphson method}
|
||||
|
||||
\subsection{Interplanetary Trajectories}
|
||||
|
||||
\begin{frame} \frametitle{Interplanetary Trajectories: Patched Conics}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[height=0.7\paperheight]{LaTeX/fig/patched_conics}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\note{Now that we have a grasp on the underlying system dynamics, we can consider the
|
||||
additions needed for interplanetary travel specifically. To this end, we'll consider the
|
||||
method of patched conics, a technique for reconciling the fact that the spacecraft will not
|
||||
be under the influence of a single body, but actually a number of different bodies over the
|
||||
course of its trajectory. To achieve this, we'll break the trajectory up into different
|
||||
sub-trajectories, each governed by a distinct single body when the spacecraft is within the
|
||||
sphere of influence of that particular body...}
|
||||
|
||||
\begin{frame} \frametitle{Interplanetary Trajectories: Gravity Assist}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[height=0.7\paperheight]{LaTeX/fig/flyby}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\note{You'll notice, though, that the trajectories within the sphere of influence aren't
|
||||
elliptical orbits. They're hyperbolic. Because of this fact, we can take advantage of the
|
||||
gravity flyby effect. Because of the nature of the hyperbolic arc the spacecraft takes
|
||||
around the planet, the spacecraft leaves in a different direction than it arrives. This
|
||||
effect can be targeted up to a point, and a free "maneuver" can be achieved, changing the
|
||||
direction of the spacecraft's motion relative to the Sun.}
|
||||
|
||||
\subsection{Low Thrust Trajectories}
|
||||
|
||||
\begin{frame} \frametitle{Low Thrust Trajectories: Sims-Flanagan Transcription}
|
||||
\begin{columns}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{itemize}
|
||||
\item Each trajectory broken into $n$ segments
|
||||
\item Impulsive thrust at the center of each one, assuming equal thrust
|
||||
over the segment
|
||||
\item Mass decremented over the duration of the segment
|
||||
\end{itemize}
|
||||
\end{column}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.45\paperwidth]{LaTeX/fig/sft}
|
||||
\end{figure}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\note{We'll also need to discretize the low-thrust controls in order to apply a direct
|
||||
optimization. This is achieved, in this thesis and many other implementations, with the
|
||||
Sims-Flanagan transcription. The trajectory is broken up into a number of smaller
|
||||
trajectories with a single impulsive thrust in the center of each. Effectively, this
|
||||
allows...}
|
||||
|
||||
\begin{frame} \frametitle{Low Thrust Trajectories: Control Vector Description}
|
||||
\begin{columns}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{align*}
|
||||
F_r &= F \cos(\beta) \sin (\alpha) \\
|
||||
F_\theta &= F \cos(\beta) \cos (\alpha) \\
|
||||
F_h &= F \sin(\beta)
|
||||
\end{align*}
|
||||
\end{column}
|
||||
\begin{column}{0.45\paperwidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.45\paperwidth]{LaTeX/fig/thrust_angle}
|
||||
\end{figure}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\note{Finally, in order to better understand the thrust control vector, we need a useful
|
||||
frame. For this purpose, I use the r theta h frame in which the r axis is... This is useful
|
||||
because the theta axis is aligned fairly close to the velocity direction. That allows for a
|
||||
useful framework in which to analyze the control thrusts. Thrusts with a low alpha angle are
|
||||
useful for raising the energy of the orbit, while other thrusts (either alpha around pi/2 or
|
||||
high beta) are useful for steering controls.}
|
||||
|
||||
\section{Algorithm Overview}
|
||||
|
||||
\subsection{Trajectory Composition}
|
||||
|
||||
\begin{frame} \frametitle{Input Description}
|
||||
\footnotesize{
|
||||
\begin{itemize}
|
||||
\item \textbf<1>{Spacecraft dry mass in kilograms}
|
||||
\item \textbf<1>{Total starting mass of the Spacecraft in kilograms}
|
||||
\item \textbf<2>{Thruster Specific Impulse in seconds}
|
||||
\item \textbf<2>{Thruster Maximum Thrusting Force in Newtons}
|
||||
\item \textbf<2>{Thruster Duty Cycle Percentage}
|
||||
\item \textbf<2>{Number of Thrusters on Spacecraft}
|
||||
\item \textbf<3>{The Launch Window Boundaries}
|
||||
\item \textbf<3>{The Latest Arrival Date}
|
||||
\item \textbf<4>{A Maximum Acceptable $V_\infty$ at arrival in kilometers per
|
||||
second}
|
||||
\item \textbf<4>{A Maximum Acceptable $C_3$ at launch in kilometers per second
|
||||
squared}
|
||||
\item \textbf<4>{A cost function relating the mass usage, $v_\infty$ at arrival, and
|
||||
$C_3$ at launch to a cost}
|
||||
\item \textbf<5>{A list of flyby planets starting with Earth and ending with the
|
||||
destination}
|
||||
\end{itemize}
|
||||
}
|
||||
\end{frame}
|
||||
|
||||
\note{In order to fully understand the optimization algorithm, it makes sense to first
|
||||
understand the variables that won't be optimized. These will represent the mission
|
||||
parameters used as inputs to the algorithm. These first two will essentially size the
|
||||
spacecraft that we'll be using. Then the next groups will define the thrusters, the launch
|
||||
and arrival windows, the cost function to be used by the direct optimizer, and finally the
|
||||
flybys that the spacecraft will leverage on its trajectory.}
|
||||
|
||||
\subsection{Inner Loop Implementation}
|
||||
|
||||
\begin{frame} \frametitle{Non-Linear Programming Approach - Definition}
|
||||
A Non-Linear Programming Problem involves finding a solution that optimizes a function:
|
||||
|
||||
\begin{equation*}
|
||||
f(\vec{x})
|
||||
\end{equation*}
|
||||
|
||||
Subject to constraints:
|
||||
\begin{align*}
|
||||
\vec{g}(\vec{x}) &\le 0 \\
|
||||
\vec{h}(\vec{x}) &= 0
|
||||
\end{align*}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\note{Now we'll treat the trajectory as a direct non-linear programming optimization
|
||||
problem. This provides a general approach to determining a local optima to a scalar function
|
||||
f of a vector-valued input, x, subject to constraints g and h, defined as can be seen here.}
|
||||
|
||||
\begin{frame} \frametitle{Non-Linear Programming Approach - Input Vector}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[height=0.7\paperheight]{LaTeX/flowcharts/nlp}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\note{So we need simply to define the function, constraints, and the input vector. Starting
|
||||
with the input vector, we need to determine...}
|
||||
|
||||
\begin{frame} \frametitle{Non-Linear Programming Approach - Constraints}
|
||||
\begin{itemize}
|
||||
\item For every phase other than the final:
|
||||
\begin{itemize}
|
||||
\item The minimum periapsis of the hyperbolic flyby arc must be above some
|
||||
user-specified minimum safe altitude.
|
||||
\item The magnitude of the incoming hyperbolic velocity must match the magnitude
|
||||
of the outgoing hyperbolic velocity.
|
||||
\item The spacecraft position must match the planet's position (within bounds)
|
||||
at the end of the phase.
|
||||
\end{itemize}
|
||||
\item For the final phase:
|
||||
\begin{itemize}
|
||||
\item The spacecraft position must match the planet's position (within bounds)
|
||||
at the end of the phase.
|
||||
\item The final mass must be greater than the dry mass of the craft.
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\note{And we can also determine a series of constraints...}
|
||||
|
||||
\begin{frame} \frametitle{Non-Linear Programming Approach - Cost Function}
|
||||
\begin{equation*}
|
||||
J(\vec{x}, m_{dry}, C_{3,max}) = 3 \left| \frac{m(\vec{x})}{m_{dry}} \right| +
|
||||
\left| \frac{C_3(\vec{x})}{C_{3,max}} \right|
|
||||
\end{equation*}
|
||||
\end{frame}
|
||||
|
||||
\note{Finally, the cost function was designed to be user-specified. However, for the
|
||||
implementation of this particular project, I utilized a combination of the normalized fuel
|
||||
usage and launch c3. Now we have a fully-defined non-linear programming problem that can be
|
||||
optimized using any direct method optimization scheme.}
|
||||
|
||||
\subsection{Outer Loop Implementation}
|
||||
|
||||
\begin{frame} \frametitle{Monotonic Basin Hopping}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[height=0.7\textheight]{LaTeX/flowcharts/mbh}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\note{Now we have a method for finding local optima in the vicinity of an input vector, but
|
||||
what we're after is the global optima, meaning that we need a method for testing a variety
|
||||
of input vectors, each of which could either fail to produce a valid trajectory after the
|
||||
inner loop or produce a valid solution that may or may not be in a "basin", or collection of
|
||||
nearby valid solutions with a single "regional" optimum. In order to approach this problem,
|
||||
I've employed a Monotonic Basin Hopping algorithm. (Step through each of the steps)}
|
||||
|
||||
\begin{frame} \frametitle{Monotonic Basin Hopping - Perturbation PDF}
|
||||
Pareto Distribution:
|
||||
\begin{equation*}
|
||||
1 +
|
||||
\left[ \frac{s}{\epsilon} \right] \cdot
|
||||
\left[ \frac{\alpha - 1}{\frac{\epsilon}{\epsilon + r}^{-\alpha}} \right]
|
||||
\end{equation*}
|
||||
\end{frame}
|
||||
|
||||
\section{Sample Mission Analysis}
|
||||
|
||||
\subsection{Mission Scenario}
|
||||
|
||||
\begin{frame} \frametitle{Mission Scenario}
|
||||
\begin{itemize}
|
||||
\item Spacecraft starting mass: 3500 kg
|
||||
\item Thruster Specific Impulse: 3200 s
|
||||
\item Thruster Maximum Thrusting Force: 250 mN
|
||||
\item Thruster Duty Cycle: 100\%
|
||||
\item Number of Thrusters: 1
|
||||
\item The Launch Window: 2023 and 2024
|
||||
\item The Latest Arrival Date: December 31st, 2044
|
||||
\item Maximum $C_3$ at launch: $100 \frac{\text{km}^2}{\text{s}^2}$
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame} \frametitle{Flybys Analyzed}
|
||||
\begin{itemize}
|
||||
\item EJS
|
||||
\item EMJS
|
||||
\item EMMJS
|
||||
\item EMS
|
||||
\item ES
|
||||
\item EVMJS
|
||||
\item EVMS
|
||||
\item EVVJS
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Trajectory 1}
|
||||
|
||||
\begin{frame} \frametitle{Trajectory 1 - Earth → Mars → Saturn}
|
||||
\begin{figure}
|
||||
\includegraphics<1>[height=0.5\paperheight]{LaTeX/fig/EMS_plot}
|
||||
\includegraphics<2>[height=0.5\paperheight]{LaTeX/fig/EMS_plot_noplanets}
|
||||
\includegraphics<3>[height=0.5\paperheight]{LaTeX/fig/EMS_thrust_mag}
|
||||
\includegraphics<4>[height=0.5\paperheight]{LaTeX/fig/EMS_thrust_components_vnb}
|
||||
\end{figure}
|
||||
\vspace{-1em}
|
||||
\begin{table}\begin{tiny}
|
||||
\begin{tabular}{ | c c c c c c | }
|
||||
\hline
|
||||
\bfseries Flyby Selection &
|
||||
\bfseries Launch Date &
|
||||
\bfseries Mission Length &
|
||||
\bfseries Launch $C_3$ &
|
||||
\bfseries Arrival $V_\infty$ &
|
||||
\bfseries Fuel Usage \\
|
||||
& & (years) & $\left( \frac{km}{s} \right)^2$ & ($\frac{km}{s}$) & (kg) \\
|
||||
\hline
|
||||
EMS & 2024-06-27 & 7.9844 & 60.41025 & 5.816058 & 446.9227 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{tiny}\end{table}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Trajectory 2}
|
||||
|
||||
\begin{frame} \frametitle{Trajectory 2 - Earth → Mars → Jupiter → Saturn}
|
||||
\begin{figure}
|
||||
\includegraphics<1>[height=0.5\paperheight]{LaTeX/fig/EMJS_plot}
|
||||
\includegraphics<2>[height=0.5\paperheight]{LaTeX/fig/EMJS_plot_noplanets}
|
||||
\includegraphics<3>[height=0.5\paperheight]{LaTeX/fig/EMJS_thrust_mag}
|
||||
\includegraphics<4>[height=0.5\paperheight]{LaTeX/fig/EMJS_thrust_components_vnb}
|
||||
\end{figure}
|
||||
\vspace{-1em}
|
||||
\begin{table}\begin{tiny}
|
||||
\begin{tabular}{ | c c c c c c | }
|
||||
\hline
|
||||
\bfseries Flyby Selection &
|
||||
\bfseries Launch Date &
|
||||
\bfseries Mission Length &
|
||||
\bfseries Launch $C_3$ &
|
||||
\bfseries Arrival $V_\infty$ &
|
||||
\bfseries Fuel Usage \\
|
||||
& & (years) & $\left( \frac{km}{s} \right)^2$ & ($\frac{km}{s}$) & (kg) \\
|
||||
\hline
|
||||
EMJS & 2023-11-08 & 14.1072 & 40.43862 & 3.477395 & 530.6683 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{tiny}\end{table}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Results Analysis}
|
||||
|
||||
\begin{frame} \frametitle{Results Review}
|
||||
\begin{table}\begin{tiny}
|
||||
\begin{tabular}{ | c c c c c c | }
|
||||
\hline
|
||||
\bfseries Flyby Selection &
|
||||
\bfseries Launch Date &
|
||||
\bfseries Mission Length &
|
||||
\bfseries Launch $C_3$ &
|
||||
\bfseries Arrival $V_\infty$ &
|
||||
\bfseries Fuel Usage \\
|
||||
& & (years) & $\left( \frac{km}{s} \right)^2$ & ($\frac{km}{s}$) & (kg) \\
|
||||
\hline
|
||||
EMS & 2024-06-27 & 7.9844 & 60.41025 & 5.816058 & 446.9227 \\
|
||||
EMJS & 2023-11-08 & 14.1072 & 40.43862 & 3.477395 & 530.6683 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{tiny}\end{table}
|
||||
\end{frame}
|
||||
|
||||
\section{Conclusion}
|
||||
|
||||
\begin{frame} \frametitle{Conclusion}
|
||||
\begin{itemize}
|
||||
\item Validation of direct approach to optimizing interplanetary, low-thrust
|
||||
trajectories as non-linear programming problems
|
||||
\item Validation of Monotonic Basin Hopping algorithm for finding global optima in the
|
||||
same scenario
|
||||
\item Application in a realistic sample mission revealed two effective trajectory
|
||||
possibilities
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame} \frametitle{Future Work}
|
||||
\begin{itemize}
|
||||
\item Outer loop which chooses optimal flyby trajectories for increased automation
|
||||
\item Parallelization would be effective for this problem
|
||||
\item Better quantification of search space ``coverage'' by the monotonic basin hopping
|
||||
algorithm
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\begin{center}
|
||||
\begin{Huge}
|
||||
Thank You!
|
||||
\end{Huge}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\bibliographystyle{plain}
|
||||
\bibliography{LaTeX/presentation}
|
||||
|
||||
\end{document}
|
||||
@@ -1,56 +1,29 @@
|
||||
\chapter{Results Analysis} \label{results}
|
||||
\chapter{Application: Designing a Trajectory To Saturn} \label{results}
|
||||
|
||||
The algorithm described in this thesis is quite flexible in its design and could be used as
|
||||
a tool for a mission designer on a variety of different mission types. However, to consider
|
||||
a relatively simple but representative mission design objective, a sample mission to Saturn
|
||||
was investigated.
|
||||
To consider a relatively simple but representative mission design objective, a sample mission to
|
||||
Saturn was investigated.
|
||||
|
||||
Ultimately, two optimized trajectories were selected. The results of those trajectories can
|
||||
be found in Table~\ref{results_table} below:
|
||||
\section{Mission Scenario}
|
||||
|
||||
\begin{table}[h!]
|
||||
\begin{small}
|
||||
\centering
|
||||
\begin{tabular}{ | c c c c c c | }
|
||||
\hline
|
||||
\bfseries Flyby Selection &
|
||||
\bfseries Launch Date &
|
||||
\bfseries Mission Length &
|
||||
\bfseries Launch $C_3$ &
|
||||
\bfseries Arrival $V_\infty$ &
|
||||
\bfseries Fuel Usage \\
|
||||
& & (years) & $\left( \frac{km}{s} \right)^2$ & ($\frac{km}{s}$) & (kg) \\
|
||||
\hline
|
||||
EMS & 2024-06-27 & 7.9844 & 60.41025 & 5.816058 & 446.9227 \\
|
||||
EMJS & 2023-11-08 & 14.1072 & 40.43862 & 3.477395 & 530.6683 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{small}
|
||||
\caption{Comparison of the two most optimal trajectories}
|
||||
\label{results_table}
|
||||
\end{table}
|
||||
|
||||
\section{Mission Constraints}
|
||||
|
||||
The sample mission was defined to represent a general case for a near-future low-thrust
|
||||
trajectory to Saturn. No constraints were placed on the flyby planets, but a number of
|
||||
The sample mission is defined to represent a general case for a near-future low-thrust
|
||||
trajectory to Saturn. No constraints are placed on the flyby planets, but a number of
|
||||
constraints were placed on the algorithm to represent a realistic mission scenario.
|
||||
|
||||
The first choice required by the application is one not necessarily designable to the
|
||||
initial mission designer (though not necessarily fixed in the design either) and is that
|
||||
of the spacecraft parameters. The application accepts as input a spacecraft object
|
||||
containing: the dry mass of the craft, the fuel mass at launch, the number of onboard
|
||||
thrusters, and the specific impulse, maximum thrust and duty cycle of each thruster.
|
||||
initial mission designer (though not necessarily fixed in the design either) and is that of
|
||||
the spacecraft parameters. The application accepts as input a spacecraft object containing:
|
||||
the dry mass of the spacecraft, the fuel mass at launch, the number of onboard thrusters,
|
||||
and the specific impulse, maximum thrust and duty cycle of each thruster.
|
||||
|
||||
For this mission, the spacecraft was chosen to have a dry mass of only 200 kilograms for
|
||||
a fuel mass of 3300 kilograms. This was chosen in order to have an overall mass roughly
|
||||
in the same zone as that of the Cassini spacecraft, which launched with 5712 kilograms
|
||||
of total mass, with the fuel accounting for 2978 of those kilograms\cite{cassini}. The
|
||||
dry mass of the craft was chosen to be extremely low in order to allow for a variety of
|
||||
''successful`` missions in which the craft didn't run out of fuel. That way, the
|
||||
delivered dry mass to Saturn could be thought of as a metric of success, without
|
||||
discounting mission that may have delivered just under whatever more realistic dry mass
|
||||
one might set, in case those missions are in the vicinity of actually valid missions.
|
||||
For this mission, the spacecraft was chosen to have a dry mass of only 200 kilograms for a
|
||||
fuel mass of 3300 kilograms. This was chosen in order to have an overall mass roughly in the
|
||||
same zone as that of the Cassini spacecraft, which launched with 5712 kilograms of total
|
||||
mass, with the fuel accounting for 2978 of those kilograms\cite{cassini}. The dry mass of
|
||||
the spacecraft was chosen to be extremely low in order to allow for a variety of
|
||||
``successful'' missions in which the spacecraft didn't run out of fuel. That way, the
|
||||
delivered dry mass to Saturn could be thought of as a metric of success, without discounting
|
||||
mission that may have delivered just under whatever more realistic dry mass one might set,
|
||||
in case those missions are in the vicinity of actually valid missions.
|
||||
|
||||
The thruster was chosen to have a specific impulse of 3200 seconds, a maximum thrust of
|
||||
250 millinewtons, and a 100\% duty cycle. This puts the thruster roughly in line with
|
||||
@@ -91,7 +64,17 @@
|
||||
used by the mass at launch and the $C_3$ number is determined by dividing the $C_3$
|
||||
at launch by the maximum allowed. These two numbers are then weighted, with the fuel
|
||||
usage value getting a weight of three and the launch energy value getting a weight
|
||||
of one. The values are summed and returned as the cost value.
|
||||
of one. The values are summed and returned as the cost value, represented as the value
|
||||
$J$ below:
|
||||
|
||||
\begin{equation}
|
||||
J(\vec{x}, m_{dry}, C_{3,max}) = 3 \left| \frac{h(\vec{x})}{m_{dry}} \right| +
|
||||
\left| \frac{k(\vec{x})}{C_{3,max}} \right|
|
||||
\end{equation}
|
||||
|
||||
\noindent
|
||||
Where $h(\vec{x})$ represents the total fuel mass used during the trajectory and
|
||||
$k(\vec{x})$ represents the launch $C_3$ of the initial phase.
|
||||
|
||||
\subsection{Flybys Analyzed}
|
||||
|
||||
@@ -102,9 +85,12 @@
|
||||
the mission.
|
||||
|
||||
For this particular mission scenario, the following flyby profiles were
|
||||
investigated:
|
||||
investigated (E: Earth, M: Mars, V: Venus, J: Jupiter, S: Saturn). These flyby choices
|
||||
were initially sampled randomly, but as patterns were noticed during the previous runs,
|
||||
certain trajectories were chosen to investigate phases that seemed promising.
|
||||
|
||||
\begin{itemize}
|
||||
\setlength\itemsep{-0.5em}
|
||||
\item EJS
|
||||
\item EMJS
|
||||
\item EMMJS
|
||||
@@ -115,6 +101,77 @@
|
||||
\item EVVJS
|
||||
\end{itemize}
|
||||
|
||||
For each of these trajectories, the optimization algorithm was run. During the MBH phase
|
||||
of the optimization algorithm, anytime a new ``basin best'' mission was discovered, it
|
||||
was recorded. The resultant cost function values of each of those discovered missions
|
||||
can be found in the table below:
|
||||
|
||||
\begin{longtable}{
|
||||
|
|
||||
>{\centering}p{0.75in}
|
||||
>{\centering}p{1.25in}
|
||||
>{\centering}p{1.1in}
|
||||
>{\centering}p{1in}
|
||||
>{\centering}p{0.8in}
|
||||
>{\centering\arraybackslash}p{0.8in}
|
||||
|
|
||||
}
|
||||
\hline
|
||||
\bfseries Flyby Selection &
|
||||
\bfseries Cost Function Value &
|
||||
\bfseries Mass Delivered (kg) &
|
||||
\bfseries Time of Flight (years) &
|
||||
\bfseries Launch $C_3$ ($\frac{\text{km}^2}{\text{s}^2}$) &
|
||||
\bfseries Arrival $V_\infty$ Norm \\
|
||||
\hline
|
||||
\endhead
|
||||
ES & 0.555 & 3423.49 & 5.945 & 97.89 & 0.009 \\
|
||||
ES & 0.5551 & 3422.41 & 5.945 & 97.73 & 0.0 \\
|
||||
ES & 0.5553 & 3425.31 & 5.897 & 98.26 & 0.0 \\
|
||||
ES & 0.561 & 3403.47 & 5.945 & 95.65 & 0.0 \\
|
||||
ES & 0.5612 & 3406.47 & 5.894 & 96.22 & 0.002 \\
|
||||
EMS & 0.648 & 3130.77 & 8.451 & 66.3 & 6.391 \\
|
||||
EMJS & 0.6601 & 2962.65 & 14.107 & 39.91 & 3.636 \\
|
||||
EMS & 0.6883 & 3004.49 & 9.229 & 52.71 & 4.245 \\
|
||||
EMS & 0.697 & 3037.04 & 7.984 & 60.04 & 6.021 \\
|
||||
EMJS & 0.7458 & 2837.9 & 14.036 & 35.65 & 4.816 \\
|
||||
EMJS & 0.7975 & 1905.95 & 12.99 & 16.92 & 2.686 \\
|
||||
EMJS & 0.8037 & 2652.62 & 13.793 & 15.48 & 3.209 \\
|
||||
EMJS & 0.8251 & 2760.39 & 13.857 & 38.23 & 3.818 \\
|
||||
EMMJS & 0.9115 & 2528.08 & 15.853 & 15.68 & 3.189 \\
|
||||
EMJS & 0.9415 & 2484.97 & 16.33 & 14.29 & 2.021 \\
|
||||
EMJS & 0.9614 & 2511.65 & 15.756 & 22.85 & 3.393 \\
|
||||
EMS & 1.0297 & 1655.14 & 10.412 & 3.18 & 4.529 \\
|
||||
EJS & 1.1285 & 1734.51 & 15.725 & 41.98 & 2.595 \\
|
||||
ES & 1.2317 & 1639.1 & 9.248 & 39.72 & 5.785 \\
|
||||
EVMS & 1.326 & 2241.72 & 8.87 & 49.49 & 4.977 \\
|
||||
EMS & 1.3288 & 1400.47 & 7.843 & 1.87 & 5.634 \\
|
||||
EMS & 1.3378 & 2705.69 & 15.848 & 131.39 & 5.151 \\
|
||||
EMJS & 1.3953 & 1904.96 & 13.813 & 5.62 & 5.146 \\
|
||||
EVMS & 1.4152 & 1963.98 & 11.315 & 19.72 & 9.117 \\
|
||||
EVMS & 1.4596 & 1963.09 & 11.885 & 28.45 & 6.7 \\
|
||||
EVMS & 1.4665 & 1915.47 & 11.691 & 21.67 & 8.919 \\
|
||||
EVMS & 1.5221 & 1966.29 & 12.002 & 41.49 & 7.085 \\
|
||||
EVMS & 1.5923 & 1811.71 & 7.612 & 29.05 & 8.892 \\
|
||||
EVMJS & 1.6694 & 2324.68 & 14.203 & 132.4 & 5.346 \\
|
||||
EMS & 1.7029 & 1652.8 & 12.064 & 23.93 & 8.898 \\
|
||||
EMJS & 1.7044 & 1687.48 & 17.45 & 30.16 & 6.148 \\
|
||||
EMS & 1.7811 & 1504.33 & 18.067 & 14.1 & 3.195 \\
|
||||
EVVJS & 2.0106 & 1362.61 & 14.71 & 35.72 & 6.315 \\
|
||||
EMJS & 2.1595 & 1026.4 & 17.548 & 7.86 & 7.977 \\
|
||||
EJS & 2.1622 & 1543.52 & 12.96 & 97.03 & 9.42 \\
|
||||
EMJS & 2.2217 & 2055.3 & 21.583 & 196.67 & 2.074 \\
|
||||
EMMJS & 2.3843 & 730.68 & 14.754 & 2.12 & 6.915 \\
|
||||
EMJS & 2.4246 & 1470.46 & 24.186 & 136.99 & 1.749 \\
|
||||
EMMJS & 2.4645 & 971.97 & 16.935 & 59.53 & 7.34 \\
|
||||
EVVJS & 2.4926 & 908.6 & 15.287 & 54.28 & 3.942 \\
|
||||
EMJS & 2.4948 & 872.56 & 12.943 & 48.55 & 8.548 \\
|
||||
EVMS & 2.7112 & 726.4 & 12.263 & 66.76 & 9.478 \\
|
||||
EMJS & 2.7681 & 496.32 & 16.0 & 38.71 & 10.348 \\
|
||||
\hline
|
||||
\caption{Table of resultant cost function values for every discovered mission}\label{cost_fn_table}\\
|
||||
\end{longtable}
|
||||
|
||||
\section{Faster, Less Efficient Trajectory}
|
||||
|
||||
In order to showcase the flexibility of the optimization algorithm (and the chosen cost
|
||||
@@ -128,21 +185,24 @@
|
||||
contrast to the usual dichotomy of low-thrust travel. The cost function used for this
|
||||
analysis did not include the time of flight as a component of the overall cost, and yet
|
||||
this trajectory still managed to be the lowest cost trajectory of all trajectories found
|
||||
by the algorithm.
|
||||
by the algorithm, meaning that it has merit for both a flyby mission as well as a capture
|
||||
mission.
|
||||
|
||||
The mission begins in late June of 2024 and proceeds first to an initial gravity assist
|
||||
with Mars after three and one half years to rendezvous in mid-December 2027.
|
||||
Unfortunately, the launch energy required to effectively used the gravity assist with
|
||||
Mars at this time is quite high. The $C_3$ value was found to be $60.4102$ kilometers
|
||||
per second squared. However, for this phase, the thrust magnitudes are quite low,
|
||||
raising slowly only as the spacecraft approaches Mars, allowing for a nearly-natural
|
||||
trajectory to Mars rendezvous. Note also that the in-plane thrust direction was neither
|
||||
zero nor $\pi$, implying that these thrusts were steering thrusts rather than
|
||||
momentum-increasing thrusts.
|
||||
The mission begins in late June of 2024 and proceeds first to an initial gravity assist with
|
||||
Mars after three and one half years to rendezvous in mid-December 2027. Unfortunately, the
|
||||
launch energy required to effectively use the gravity assist with Mars at this time is
|
||||
quite high. The $C_3$ value was found to be $60.4102 \frac{\text{km}^2}{\text{s}^2}$. While
|
||||
not as low as some of the other missions found to be very optimal, it should be noted that
|
||||
missions with this $C_3$ and launch mass are still quite feasible.
|
||||
|
||||
However, for this phase, the thrust magnitudes are quite low, raising slowly only as the
|
||||
spacecraft approaches Mars, allowing for a nearly-natural trajectory to Mars rendezvous.
|
||||
Note also that the in-plane thrust angle was neither zero nor $\pi$, implying that these
|
||||
thrusts were steering thrusts rather than momentum-increasing thrusts.
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{fig/EMS_plot}
|
||||
\includegraphics[width=0.9\textwidth]{LaTeX/fig/EMS_plot}
|
||||
\caption{Depictions of the faster Earth-Mars-Saturn trajectory found by the
|
||||
algorithm to be most efficient; planetary ephemeris arcs are shown during the phase
|
||||
in which the spacecraft approached them}
|
||||
@@ -151,39 +211,39 @@
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{fig/EMS_plot_noplanets}
|
||||
\includegraphics[width=0.9\textwidth]{LaTeX/fig/EMS_plot_noplanets}
|
||||
\caption{Another depiction of the EMS trajectory, without the planetary ephemeris
|
||||
arcs}
|
||||
\label{ems_nop}
|
||||
\end{figure}
|
||||
|
||||
The second and final leg of this trip exits the Mars flyby and, initially burns quite
|
||||
heavily along the velocity vector in order to increase it's semi-major axis. After an
|
||||
initial period of thrusting, though, the spacecraft effectively coasts with minor
|
||||
adjustments until its rendezvous with Saturn just four and a half years later in June of
|
||||
2032. The arrival $v_\infty$ is not particularly small, at $5.816058$ kilometers per
|
||||
second, but this is to be expected as the arrival excess velocity was not considered as
|
||||
a part of the cost function. If capture was not the final intention of the mission, this
|
||||
may be of little concern. Otherwise, the low fuel usage of $446.92$ kilograms for a
|
||||
$3500$ kilogram launch mass leaves much margin for a large impulsive thrust to enter
|
||||
into a capture orbit at Saturn.
|
||||
heavily along the velocity vector in order to increase its semi-major axis. After an initial
|
||||
period of thrusting, though, the spacecraft effectively coasts with minor adjustments until
|
||||
its rendezvous with Saturn just four and a half years later in June of 2032. The arrival
|
||||
$v_\infty$ is not particularly small, at $5.816058 \frac{\text{km}}{\text{s}}$, but this is
|
||||
to be expected as the arrival excess velocity was not considered as a part of the cost
|
||||
function. If capture was not the final intention of the mission, this may be of little
|
||||
concern. Otherwise, the low fuel usage of $446.92$ kilograms for a $3500$ kilogram launch
|
||||
mass leaves much margin for a large impulsive thrust to enter into a capture orbit at
|
||||
Saturn.
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{fig/EMS_thrust_mag}
|
||||
\includegraphics[width=0.9\textwidth]{LaTeX/fig/EMS_thrust_mag}
|
||||
\caption{The magnitude of the unit thrust vector over time for the EMS trajectory}
|
||||
\label{ems_mag}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{fig/EMS_thrust_components}
|
||||
\includegraphics[width=0.9\textwidth]{LaTeX/fig/EMS_thrust_components}
|
||||
\caption{The inertial x, y, and z components of the unit thrust vector over time for
|
||||
the EMS trajectory}
|
||||
\label{ems_components}
|
||||
\end{figure}
|
||||
|
||||
In this case the algorithm effectively realized that a higher-powered launch from
|
||||
In this case the algorithm effectively discovered that a higher-powered launch from
|
||||
the Earth, then a natural coasting arc to Mars flyby would provide the spacecraft with
|
||||
enough velocity that a short but efficient powered-arc to Saturn was possible with
|
||||
effective thrusting. It also determined that the most effective way to achieve this
|
||||
@@ -202,12 +262,11 @@
|
||||
|
||||
\section{Slower, More Efficient Trajectory}
|
||||
|
||||
Next we'll analyze the nominally second-best trajectory. While the cost function
|
||||
provided to the algorithm can be a useful tool for narrowing down the field of search
|
||||
results, it can also be very useful to explore options that may or may not be of similar
|
||||
"efficiency" in terms of the cost function, but beneficial for other reasons. By
|
||||
outputting many different optimal trajectories, the MBH algorithm can allow for this
|
||||
type of mission design flexibility.
|
||||
Next we'll analyze the nominally second-best trajectory. While the cost function provided to
|
||||
the algorithm can be a useful tool for narrowing down the field of search results, it can
|
||||
also be very useful to explore options that may or may not have quite as small of a cost
|
||||
function value, but beneficial for other reasons. By outputting many different optimal
|
||||
trajectories, the MBH algorithm can allow for this type of mission design flexibility.
|
||||
|
||||
To highlight the flexibility, a second trajectory has been selected, which has nearly
|
||||
equal value by the cost function, coming in slightly lower. However, this trajectory
|
||||
@@ -227,7 +286,7 @@
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{fig/EMJS_plot}
|
||||
\includegraphics[width=0.9\textwidth]{LaTeX/fig/EMJS_plot}
|
||||
\caption{Depictions of the slower Earth-Mars-Jupiter-Saturn trajectory found by the
|
||||
algorithm to be the second most efficient; planetary ephemeris arcs are shown during
|
||||
the phase in which the spacecraft approached them}
|
||||
@@ -236,7 +295,7 @@
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{fig/EMJS_plot_noplanets}
|
||||
\includegraphics[width=0.9\textwidth]{LaTeX/fig/EMJS_plot_noplanets}
|
||||
\caption{Another depiction of the EMJS trajectory, without the planetary ephemeris
|
||||
arcs}
|
||||
\label{emjs_nop}
|
||||
@@ -251,14 +310,14 @@
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{fig/EMJS_thrust_mag}
|
||||
\includegraphics[width=0.9\textwidth]{LaTeX/fig/EMJS_thrust_mag}
|
||||
\caption{The magnitude of the unit thrust vector over time for the EMJS trajectory}
|
||||
\label{emjs_mag}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{fig/EMJS_thrust_components}
|
||||
\includegraphics[width=0.9\textwidth]{LaTeX/fig/EMJS_thrust_components}
|
||||
\caption{The inertial x, y, and z components of the unit thrust vector over time for
|
||||
the EMJS trajectory}
|
||||
\label{emjs_components}
|
||||
@@ -276,81 +335,51 @@
|
||||
While the fuel use is also slightly higher at $530.668$ kilograms, plenty of payload
|
||||
mass is still capable of delivery into the vicinity of Saturn. Also, it should be noted
|
||||
that the incoming excess hyperbolic velocity at arrival to Saturn is significantly
|
||||
lower, at only $3.4774$ kilometers per second, meaning that less of the delivered
|
||||
lower, at only $3.4774\frac{\text{km}}{\text{s}}$, meaning that less of the delivered
|
||||
payload mass would need to be taken up by impulsive thrusters and fuel for Saturn orbit
|
||||
capture, should the mission designer desire this.
|
||||
|
||||
Also, as mentioned before, the launch energy requirements are quite a bit lower. Having
|
||||
a second mission trajectory capable of launching on a smaller vehicle could be valuable
|
||||
to a mission designer presenting possibilities. According to an analysis of the Delta IV
|
||||
and Atlas V launch configurations\cite{c3capabilities} in Figure~\ref{c3}, this
|
||||
\section{Final Trajectory Analysis}
|
||||
|
||||
Ultimately, two optimized trajectories were selected to be excellent candidates for further
|
||||
consideration. The resultant flyby selection, launch and arrival dates, and relevant cost
|
||||
function input of those trajectories can be found in Table~\ref{results_table} below:
|
||||
|
||||
\begin{table}[h!]
|
||||
\begin{small}
|
||||
\centering
|
||||
\begin{tabular}{ | c c c c c c | }
|
||||
\hline
|
||||
\bfseries Flyby Selection &
|
||||
\bfseries Launch Date &
|
||||
\bfseries Mission Length &
|
||||
\bfseries Launch $C_3$ &
|
||||
\bfseries Arrival $V_\infty$ &
|
||||
\bfseries Fuel Usage \\
|
||||
& & (years) & $\left( \frac{km}{s} \right)^2$ & ($\frac{km}{s}$) & (kg) \\
|
||||
\hline
|
||||
EMS & 2024-06-27 & 7.9844 & 60.41025 & 5.816058 & 446.9227 \\
|
||||
EMJS & 2023-11-08 & 14.1072 & 40.43862 & 3.477395 & 530.6683 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{small}
|
||||
\caption{Comparison of the two most optimal trajectories}
|
||||
\label{results_table}
|
||||
\end{table}
|
||||
|
||||
As mentioned before, the launch energy requirements of the second trajectory are quite a bit
|
||||
lower. Having a second mission trajectory capable of launching on a smaller vehicle could be
|
||||
valuable to a mission designer presenting possibilities. According to an analysis of the
|
||||
Delta IV and Atlas V launch configurations\cite{c3capabilities} in Figure~\ref{c3}, this
|
||||
reduction of $C_3$ from around 60 to around 40 brings the sample mission to just within
|
||||
range of both the Delta IV Heavy and the Atlas V in its largest configuration, neither
|
||||
of which are possible for the other result, meaning that either different launch
|
||||
vehicles must be found or mission specifications must change.
|
||||
range of both the Delta IV Heavy and the Atlas V in its largest configuration, neither of
|
||||
which are possible for the other result, meaning that either different launch vehicles must
|
||||
be found or mission specifications must change.
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{fig/c3}
|
||||
\includegraphics[width=\textwidth]{LaTeX/fig/c3}
|
||||
\caption{Plot of Delta IV and Atlas V launch vehicle capabilities as they relate to
|
||||
payload mass}
|
||||
payload mass \cite{c3capabilities} from Vardaxis, et al, 2007 }
|
||||
\label{c3}
|
||||
\end{figure}
|
||||
|
||||
\chapter{Conclusion} \label{conclusion}
|
||||
|
||||
\section{Overview of Results}
|
||||
|
||||
A mission designer's job is quite a difficult one and it can be very useful to have
|
||||
tools to automate some of the more complex analysis. This paper attempted to explore one
|
||||
such tool, meant for automating the initial analysis and discovery of useful
|
||||
interplanetary, low-thrust trajectories including the difficult task of optimizing the
|
||||
flyby parameters. This makes the mission designer's job significantly simpler in that
|
||||
they can simply explore a number of different flyby selection options in order to get a
|
||||
good understanding of the mission scope and search space for a given spacecraft, launch
|
||||
window, and target.
|
||||
|
||||
In performing this examination, two results were selected for further analysis. These
|
||||
results are outlined in Table~\ref{results_table}. As can be seen in the table, both
|
||||
resulting trajectories have trade-offs in mission length, launch energy, fuel usage, and
|
||||
more. However, both results should be considered very useful low-thrust trajectories in
|
||||
comparison to other missions that have launched on similar interplanetary trajectories,
|
||||
using both impulsive and low-thrust arcs with planetary flybys. Each of these missions
|
||||
should be feasible or nearly feasible (feasible with some modifications) using existing
|
||||
launch vehicle and certainly even larger missions should be reasonable with advances in
|
||||
launch capabilities currently being explored.
|
||||
|
||||
\section{Recommendations for Future Work}\label{improvement_section}
|
||||
|
||||
In the course of producing this algorithm, a large number of improvement possibilities
|
||||
were noted. This work was based, in large part, on the work of Jacob Englander in a
|
||||
number of papers\cite{englander2014tuning}\cite{englander2017automated}
|
||||
\cite{englander2012automated} in which he explored the hybrid optimal control problem of
|
||||
multi-objective low-thrust interplanetary trajectories.
|
||||
|
||||
In light of this, there are a number of additional approaches that Englander took in
|
||||
preparing his algorithm that were not implemented here in favor of reducing complexity
|
||||
and time constraints. For instance, many of the Englander papers explore the concept of
|
||||
an outer loop that utilizes a genetic algorithm to compare many different flyby planet
|
||||
choice against each other. This would create a truly automated approach to low-thrust
|
||||
interplanetary mission planning. However, a requirement of this approach is that the
|
||||
monotonic basin hopping algorithm algorithm must converge on optimal solutions very
|
||||
quickly. Englander typically runs his for 20 minutes each for evolutionary fitness
|
||||
evaluation, which is over an order of magnitude faster than the implementation in this
|
||||
paper to achieve satisfactory results.
|
||||
|
||||
Further improvements to performance stem from the field of computer science. An
|
||||
evolutionary algorithm such as the one proposed by Englander would benefit from high
|
||||
levels of parallelization. Therefore, it would be worth considering a GPU-accelerated or
|
||||
even cluster-computing capable implementation of the monotonic basin hopping algorithm.
|
||||
These cluster computing concepts scale very well with new cloud infrastructures such as
|
||||
that provided by AWS or DigitalOcean.
|
||||
|
||||
Finally, the monotonic basin hopping algorithm as currently written provides no
|
||||
guarantees of actual global optimization. Generally optimization is achieved by running
|
||||
the algorithm until it fails to produce newer, better trajectories for a sufficiently
|
||||
long time. But it would be worth investigating the robustness of the NLP solver as well
|
||||
as the robustness of the MBH algorithm basin drilling procedures in order to quantify
|
||||
the search granularity needed to completely traverse the search space. From this
|
||||
information, a new MBH algorithm could be written that is guaranteed to explore the
|
||||
entire space.
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
\documentclass[defaultstyle,11pt]{thesis}
|
||||
\documentclass[defaultstyle,11pt]{LaTeX/thesis}
|
||||
|
||||
\usepackage{graphicx}
|
||||
\usepackage{amssymb}
|
||||
@@ -7,6 +7,9 @@
|
||||
\usepackage{amsfonts}
|
||||
\usepackage{float}
|
||||
\usepackage{xfrac}
|
||||
\usepackage{adjustbox}
|
||||
\usepackage{longtable}
|
||||
\usepackage{array}
|
||||
|
||||
\title{Designing Optimal Low-Thrust Interplanetary Trajectories Utilizing Monotonic Basin Hopping}
|
||||
\author{Richard C.}{Johnstone}
|
||||
@@ -20,33 +23,48 @@
|
||||
|
||||
\abstract{ \OnePageChapter
|
||||
|
||||
There are a variety of approaches to finding and optimizing low-thrust trajectories in
|
||||
interplanetary space. This thesis analyzes one such approach, namely the application of a
|
||||
Monotonic Basin Hopping (MBH) algorithm to a series of Sims-Flanagan transcribed trajectory arcs
|
||||
and its applications in a multiple-shooting non-linear solver for the purpose of finding valid
|
||||
low-thrust trajectories between planets given poor initial conditions. These valid arcs are then
|
||||
fed into the MBH algorithm, which combines them in order to find and optimize interplanetary
|
||||
trajectories, given a set of flyby planets. This allows for a fairly rapid searching of a very
|
||||
large solution space of low-thrust profiles via a medium fidelity inner-loop solver and a
|
||||
well-suited optimization routine. The trajectories found by this method can then be optimized
|
||||
further by feeding the solutions back, once again, into the non-linear solver, this time
|
||||
allowing the solver to perform optimization.
|
||||
Much work has been performed recently to utilize the increasingly viable technology of
|
||||
low-thrust electric propulsion systems on missions of interplanetary scope. This thesis analyzes
|
||||
a technique for designing trajectories for spacecraft with a low-thrust propulsion system that
|
||||
also use natural gravity flybys for missions to the outer planets. Often, the goal is to find
|
||||
feasible solutions that also minimize propellant mass requirements. First, locally optimal
|
||||
solutions are constructed by using an interior-point linesearch algorithm, along with multiple
|
||||
shooting techniques for optimization. Then, Monotonic Basin Hopping is utilized to traverse the
|
||||
search space, improve the local optima determined by the internal optimizer, and determine the
|
||||
global optima. This approach allows for a medium-fidelity, fully automated global optimization
|
||||
of the low thrust controls and flyby parameters for a given target destination. As an
|
||||
application of this method, two sample trajectories to Saturn are analyzed.
|
||||
|
||||
}
|
||||
|
||||
\dedication[Dedication]{
|
||||
Dedicated to some people.
|
||||
\begin{center}
|
||||
I'd like to dedicate this work to anyone with an interest in space.
|
||||
|
||||
We're all exploring this together.
|
||||
\end{center}
|
||||
}
|
||||
|
||||
\acknowledgements{ \OnePageChapter
|
||||
This will be an acknowledgement.
|
||||
I owe just about everything that I am today to the circumstances that I grew up in and in no
|
||||
area of my life is that more apparent than in my loving family. I'd like to thank them for
|
||||
providing me with the emotional support I needed to grow confident in my own abilities and the
|
||||
logistical support I needed to nurture my curiosities.
|
||||
|
||||
I'd also like to thank my girlfriend, Rachael, for supporting me through this process. This has
|
||||
not been an easy time for me, and I owe a lot to your support this past year.
|
||||
|
||||
Finally, I'd like to give a huge thanks to Dr. Bosanac, who provided me with the structure I
|
||||
needed to stay on track, the motivation I needed to really get the most out of this paper, and
|
||||
the guidance I needed to finish this up. It's no exxageration to say that this thesis wouldn't be
|
||||
written to anywhere near the level of quality it was without you.
|
||||
}
|
||||
|
||||
\emptyLoT
|
||||
|
||||
\begin{document}
|
||||
|
||||
\input macros.tex
|
||||
\input LaTeX/macros.tex
|
||||
|
||||
\input LaTeX/introduction.tex
|
||||
|
||||
@@ -58,10 +76,10 @@
|
||||
|
||||
\input LaTeX/results.tex
|
||||
|
||||
\input LaTeX/conclusion.tex
|
||||
|
||||
\bibliographystyle{plain}
|
||||
\nocite{*}
|
||||
\bibliography{thesis}
|
||||
|
||||
\appendix
|
||||
\bibliography{LaTeX/thesis}
|
||||
|
||||
\end{document}
|
||||
|
||||
@@ -16,56 +16,49 @@
|
||||
very high-fidelity force models that account for aerodynamic pressure, solar radiation
|
||||
pressure, multi-body effects, and other forces may be too time intensive for a
|
||||
particular application. Initial surveys of the solution space often don't require such
|
||||
complex models in order to gain valuable insight.
|
||||
complex models in order to gain valuable preliminary insight.
|
||||
|
||||
Therefore, a common approach (and the one utilized in this implementation) is to first
|
||||
use a lower-fidelity dynamical model that captures only the gravitational force due to
|
||||
the primary body around which the spacecraft is orbiting. This approach can provide an
|
||||
A common approach (and the one utilized in this implementation) is to first use a
|
||||
lower-fidelity dynamical model that captures only the gravitational force due to the
|
||||
primary body around which the spacecraft is orbiting. This approach can provide an
|
||||
excellent low-to-medium fidelity model that is useful as an underlying model in an
|
||||
algorithm for quickly categorizing a search space for initial mission feasibility
|
||||
explorations.
|
||||
|
||||
In order to explore the Two Body Problem, we must first examine the full set of
|
||||
assumptions associated with the force model\cite{vallado2001fundamentals}. Firstly, we
|
||||
are only concerned with the nominative two bodies: the spacecraft and the planetary body
|
||||
around which it is orbiting. Secondly, both of these bodies are modeled as point masses
|
||||
with constant mass. This removes the need to account for non-uniform densities and
|
||||
asymmetry. Finally, for convenience in notation at the end, we'll also assume that the
|
||||
mass of the spacecraft ($m_2$) is much much smaller than the mass of the planetary body
|
||||
($m_1$) and enough so as to be considered negligible. The only force acting on this
|
||||
system is then the force of gravity that the primary body enacts upon the secondary.
|
||||
|
||||
are only concerned with the gravitational influence between the nominative two bodies:
|
||||
the spacecraft and the planetary body around which it is orbiting. Secondly, both of
|
||||
these bodies are modeled as point masses with constant mass. This removes the need to
|
||||
account for non-uniform densities and asymmetry. Finally, for convenience in notation at
|
||||
the end, we'll also assume that the mass of the spacecraft ($m_2$) is much much smaller
|
||||
than the mass of the planetary body ($m_1$) and enough so as to be considered
|
||||
negligible.
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.65\textwidth]{fig/2bp}
|
||||
\includegraphics[width=0.65\textwidth]{LaTeX/fig/2bp}
|
||||
\caption{Figure representing the positions of the bodies relative to each other and
|
||||
the center of mass in the two body problem}
|
||||
\label{2bp_fig}
|
||||
\end{figure}
|
||||
|
||||
Under these assumptions, the force acting on the body due to the law of universal
|
||||
gravitation is:
|
||||
|
||||
\begin{align}
|
||||
F_2 &= - \frac{G m_1 m_2}{r^2} \frac{\vec{r}}{\left| r \right|} \\
|
||||
F_1 &= \frac{G m_2 m_1}{r^2} \frac{\vec{r}}{\left| r \right|}
|
||||
\end{align}
|
||||
|
||||
And by Newton's second law (force is the product of mass and acceleration), we can
|
||||
derive the following differential equations for $r_1$ and $r_2$:
|
||||
|
||||
\begin{align}
|
||||
m_2 \ddot{\vec{r}}_2 &= - \frac{G m_1 m_2}{r^2} \frac{\vec{r}}{\left| r \right|} \\
|
||||
m_1 \ddot{\vec{r}}_1 &= \frac{G m_2 m_1}{r^2} \frac{\vec{r}}{\left| r \right|}
|
||||
\end{align}
|
||||
|
||||
Where $\vec{r}$ is the position of the spacecraft relative to the primary body,
|
||||
$\vec{r}_1$ is the position of the primary body relative to the origin of the inertial
|
||||
frame, and $\vec{r}_2$ is the position of the spacecraft relative to the center of the
|
||||
inertial frame. $G$ is the universal gravitational parameter, $m_1$ is the mass of the
|
||||
planetary body, and $m_2$ is the mass of the spacecraft. From these equations, we can
|
||||
then determine the acceleration of the spacecraft relative to the planet:
|
||||
|
||||
\begin{equation}
|
||||
\ddot{\vec{r}} = \ddot{\vec{r}}_2 - \ddot{\vec{r}}_1 =
|
||||
- \frac{G \left( m_1 + m_2 \right)}{r^2} \frac{\vec{r}}{\left| r \right|}
|
||||
@@ -76,66 +69,19 @@
|
||||
negligible $m_2$ term. We can also introduce, for convenience, a gravitational parameter
|
||||
$\mu$ which represents the gravity constant for the system about the center of motion
|
||||
($\mu = G (m_1 + m_2) \approx G m_1$). Doing so and simplifying produces:
|
||||
|
||||
\begin{equation}
|
||||
\ddot{\vec{r}} = - \frac{\mu}{r^2} \hat{r}
|
||||
\end{equation}
|
||||
|
||||
We may also wish to utilize the total orbital energy for a spacecraft within this model.
|
||||
Since the spacecraft is acting only under the gravitational influence of the planet and
|
||||
no other forces, we can define the total specific mechanical energy as:
|
||||
|
||||
|
||||
We may also wish to utilize the total orbital energy for a spacecraft within this model.
|
||||
Since the spacecraft is acting only under the gravitational influence of the planet and
|
||||
no other forces, we can define the total specific mechanical energy as:
|
||||
|
||||
|
||||
We may also wish to utilize the total orbital energy for a spacecraft within this model.
|
||||
Since the spacecraft is acting only under the gravitational influence of the planet and
|
||||
no other forces, we can define the total specific mechanical energy as:
|
||||
|
||||
|
||||
We may also wish to utilize the total orbital energy for a spacecraft within this model.
|
||||
Since the spacecraft is acting only under the gravitational influence of the planet and
|
||||
no other forces, we can define the total specific mechanical energy as:
|
||||
|
||||
|
||||
We may also wish to utilize the total orbital energy for a spacecraft within this model.
|
||||
Since the spacecraft is acting only under the gravitational influence of the planet and
|
||||
no other forces, we can define the total specific mechanical energy as:
|
||||
|
||||
|
||||
We may also wish to utilize the total orbital energy for a spacecraft within this model.
|
||||
Since the spacecraft is acting only under the gravitational influence of the planet and
|
||||
no other forces, we can define the total specific mechanical energy as:
|
||||
|
||||
|
||||
We may also wish to utilize the total orbital energy for a spacecraft within this model.
|
||||
Since the spacecraft is acting only under the gravitational influence of the planet and
|
||||
no other forces, we can define the total specific mechanical energy as:
|
||||
|
||||
|
||||
We may also wish to utilize the total orbital energy for a spacecraft within this model.
|
||||
Since the spacecraft is acting only under the gravitational influence of the planet and
|
||||
no other forces, we can define the total specific mechanical energy as:
|
||||
|
||||
|
||||
We may also wish to utilize the total orbital energy for a spacecraft within this model.
|
||||
Since the spacecraft is acting only under the gravitational influence of the planet and
|
||||
no other forces, we can define the total specific mechanical energy as
|
||||
\cite{vallado2001fundamentals}:
|
||||
|
||||
\begin{equation} \label{energy}
|
||||
\xi = \frac{v^2}{2} - \frac{\mu}{r}
|
||||
\end{equation}
|
||||
|
||||
\noindent
|
||||
Where the first term represents the kinetic energy of the spacecraft and the second term
|
||||
represents the gravitational potential energy.
|
||||
|
||||
\subsection{Kepler's Laws}
|
||||
|
||||
Now that we've fully qualified the forces acting within the Two Body Problem, we can concern
|
||||
ourselves with more practical applications of it as a force model. It should be noted,
|
||||
firstly, that the spacecraft's position and velocity (given an initial position and velocity
|
||||
@@ -144,6 +90,8 @@
|
||||
one-dimensional equations (one for each component of the three-dimensional space) and
|
||||
three unknowns (the three components of the second derivative of the position).
|
||||
|
||||
\subsection{Kepler's Laws}
|
||||
|
||||
In the early 1600s, Johannes Kepler produced just such a solution, by taking advantages of
|
||||
what is also known as ``Kepler's Laws'' which are\cite{murray1999solar}:
|
||||
|
||||
@@ -152,68 +100,61 @@
|
||||
expanded to any orbit by re-wording as ``all orbital paths follow a conic section
|
||||
(circle, ellipse, parabola, or hyperbola) with a primary mass at one of the foci''.
|
||||
|
||||
Specifically the path of the orbit follows the trajectory equation:
|
||||
|
||||
The conic trajectory equation explains this observation and offers a description
|
||||
of the path as:
|
||||
\begin{equation}
|
||||
r = \frac{\sfrac{h^2}{\mu}}{1 + e \cos(\theta)}
|
||||
\end{equation}
|
||||
|
||||
Where $h$ is the angular momentum of the satellite, $e$ is the
|
||||
where $h$ is the angular momentum of the satellite, $e$ is the
|
||||
eccentricity of the orbit, and $\theta$ is the true anomaly, or simply
|
||||
the angular distance the satellite has traversed along the orbit path.
|
||||
the angular distance the satellite has traversed along the orbit path from
|
||||
periapsis.
|
||||
|
||||
\item The area swept out by the imaginary line connecting the primary and secondary
|
||||
bodies increases linearly with respect to time. This implies that the magnitude of the
|
||||
orbital speed is not constant. For the moment, we'll just take this
|
||||
value to be a constant:
|
||||
|
||||
\begin{equation}\label{swept}
|
||||
\frac{\Delta t}{T} = \frac{k}{\pi a b}
|
||||
\end{equation}
|
||||
|
||||
Where $k$ is the constant value, $a$ and $b$ are the semi-major and
|
||||
where $k$ is the constant value, $a$ and $b$ are the semi-major and
|
||||
semi-minor axis of the conic section, and $T$ is the period. In the
|
||||
following section, we'll derive the value for $k$.
|
||||
|
||||
\item The square of the orbital period is proportional to the cube of the semi-major
|
||||
axis of the orbit, regardless of eccentricity. Specifically, the relationship is:
|
||||
|
||||
axis of the orbit, regardless of eccentricity. For an elliptical orbit this
|
||||
observation connects to the following known expression for the orbit period:
|
||||
\begin{equation}
|
||||
T = 2 \pi \sqrt{\frac{a^3}{\mu}}
|
||||
\end{equation}
|
||||
|
||||
Where $T$ is the period and $a$ is the semi-major axis.
|
||||
where $T$ is the period and $a$ is the semi-major axis.
|
||||
\end{enumerate}
|
||||
|
||||
\subsection{Kepler's Equation}
|
||||
|
||||
Kepler was able to produce an equation to represent the angular displacement of an
|
||||
orbiting body around a primary body as a function of time, which we'll derive now for
|
||||
the elliptical case\cite{vallado2001fundamentals}. Since the total area of an ellipse is
|
||||
the product of $\pi$, the semi-major axis, and the semi-minor axis ($\pi a b$), we can
|
||||
relate (by Kepler's second law) the area swept out by an orbit as a function of time, as
|
||||
we did in Equation~\ref{swept}. This leaves just one unknown variable $k$, which we can
|
||||
determine through use of the geometric auxiliary circle, which is a circle with radius
|
||||
equal to the ellipse's semi-major axis and center directly between the two foci, as in
|
||||
Figure~\ref{aux_circ}.
|
||||
the elliptical case\cite{vallado2001fundamentals}. Because the total area of an ellipse
|
||||
is the product of $\pi$, the semi-major axis, and the semi-minor axis ($\pi a b$), we
|
||||
can relate (by Kepler's second law) the area swept out by an orbit as a function of
|
||||
time, as we did in Equation~\ref{swept}. This leaves just one unknown variable $k$,
|
||||
which we can determine through use of the geometric auxiliary circle, which is a circle
|
||||
with radius equal to the ellipse's semi-major axis and center directly between the two
|
||||
foci, as in Figure~\ref{aux_circ}.
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{fig/kepler}
|
||||
\caption{Geometric Representation of Auxiliary Circle}\label{aux_circ}
|
||||
\includegraphics[width=0.8\textwidth]{LaTeX/fig/kepler}
|
||||
\caption{Geometric representation of auxiliary circle}\label{aux_circ}
|
||||
\end{figure}
|
||||
|
||||
In order to find the area swept by the spacecraft\cite{vallado2001fundamentals}, $k$, we
|
||||
can take advantage of the fact that that area is the triangle $k_1$ subtracted from the
|
||||
elliptical segment $PCB$:
|
||||
|
||||
\begin{equation}\label{areas_eq}
|
||||
k = area(seg_{PCB}) - area(k_1)
|
||||
\end{equation}
|
||||
|
||||
\noindent
|
||||
Where the area of the triangle $k_1$ can be found easily using geometric formulae:
|
||||
|
||||
\begin{align}
|
||||
area(k_1) &= \frac{1}{2} \left( ae - a \cos E \right) \left( \frac{b}{a} a \sin E \right) \\
|
||||
&= \frac{ab}{2} \left(e \sin E - \cos E \sin E \right)
|
||||
@@ -225,7 +166,6 @@
|
||||
can find the area for the elliptical segment $PCB$ by first finding the circular segment
|
||||
$POB'$, subtracting the triangle $COB'$, then applying the fact that an ellipse is
|
||||
merely a vertical scaling of a circle by the amount $\frac{b}{a}$.
|
||||
|
||||
\begin{align}
|
||||
area(PCB) &= \frac{b}{a} \left( area(POB') - area(COB') \right) \\
|
||||
&= \frac{b}{a} \left( \frac{a^2 E}{2} - \frac{1}{2} \left( a \cos E \right)
|
||||
@@ -233,29 +173,22 @@
|
||||
&= \frac{abE}{2} - \frac{ab}{2} \left( \cos E \sin E \right) \\
|
||||
&= \frac{ab}{2} \left( E - \cos E \sin E \right)
|
||||
\end{align}
|
||||
|
||||
By substituting the two areas back into Equation~\ref{areas_eq} we can get the $k$ area
|
||||
swept out by the spacecraft:
|
||||
|
||||
\begin{equation}
|
||||
k = \frac{ab}{2} \left( E - e \sin E \right)
|
||||
\end{equation}
|
||||
|
||||
Which we can then substitute back into the equation for the swept area as a function of
|
||||
time (Equation~\ref{swept}) for period of time since the spacecraft left periapsis:
|
||||
|
||||
\begin{equation}
|
||||
\frac{\Delta t}{T} = \frac{t_2 - t_{peri}}{T} = \frac{E - e \sin E}{2 \pi}
|
||||
\end{equation}
|
||||
|
||||
Which is, effectively, Kepler's equation. It is commonly known by a different form:
|
||||
|
||||
\begin{equation}
|
||||
M = \sqrt{\frac{\mu}{a^3}} \Delta t = E - e \sin E
|
||||
\end{equation}
|
||||
|
||||
Where we've defined the mean anomaly as $M$ and used the fact that $T =
|
||||
\sqrt{\frac{a^3}{\mu}}$. This provides us a useful relationship between Eccentric Anomaly
|
||||
where we've defined the mean anomaly as $M$ and used the fact that $T =
|
||||
\sqrt{\frac{a^3}{\mu}}$. This provides us a useful relationship between eccentric anomaly
|
||||
($E$) which can be related to spacecraft position, and time, but we still need a useful
|
||||
algorithm for solving this equation in order to use this equation to propagate a
|
||||
spacecraft.
|
||||
@@ -263,77 +196,57 @@
|
||||
\subsection{LaGuerre-Conway Algorithm}\label{laguerre}
|
||||
|
||||
For this thesis, the algorithm used to solve Kepler's equation was the general numeric
|
||||
root-finding scheme first developed by LaGuerre in the 1800s and first applied to
|
||||
Kepler's equation by Bruce Conway in 1985\cite{laguerre_conway}. In his paper, Conway
|
||||
makes a compelling argument for utilizing the less common LaGuerre method over higher
|
||||
order Newton or Newton-Raphson methods.
|
||||
|
||||
The Newton-Raphson methods, while found to generally have quite impressive convergence
|
||||
rates (generally successfully solving Kepler's equation correctly within 5 iterations),
|
||||
were prone to failures in convergence given certain specific initial conditions.
|
||||
Therefore LaGuerre's algorithm is proposed as an alternative.
|
||||
|
||||
The algorithm can be relatively easily derived by examining the polynomial equation with
|
||||
$m$ roots:
|
||||
root-finding scheme first developed by LaGuerre in the 1800s and first applied to Kepler's
|
||||
equation by Bruce Conway in 1985\cite{laguerre_conway}. In his paper, Conway makes a
|
||||
compelling argument for utilizing the less common LaGuerre method over higher order Newton
|
||||
or Newton-Raphson methods. The Newton-Raphson methods, while found to generally have quite
|
||||
impressive convergence rates (generally successfully solving Kepler's equation correctly
|
||||
within 5 iterations), were prone to failures in convergence given certain specific initial
|
||||
conditions. Therefore LaGuerre's algorithm is proposed as an alternative.
|
||||
|
||||
The algorithm can be derived by examining the polynomial equation with $m$ roots:
|
||||
\begin{equation}
|
||||
g(x) = (x - x_1) (x - x_2) ... ( x - x_m)
|
||||
\end{equation}
|
||||
|
||||
\noindent
|
||||
We can then generate some useful convenience functions as:
|
||||
|
||||
\begin{align}
|
||||
\ln|g(x)| &= \ln|(x - x_1)| + \ln|(x - x_2)| + ... + \ln|( x - x_m)| \\
|
||||
\frac{d\ln|g(x)|}{dx} &= \frac{1}{x - x_1} + \frac{1}{x - x_2} + ... + \frac{1}{x -
|
||||
x_m} = G_1(x)
|
||||
\end{align}
|
||||
|
||||
and
|
||||
|
||||
\begin{align}
|
||||
\frac{-d^2\ln|g(x)|}{dx^2} &= \frac{1}{(x - x_1)^2} + \frac{1}{(x - x_2)^2} + ... +
|
||||
\frac{1}{(x - x_m)^2} = G_2(x)
|
||||
\end{align}
|
||||
|
||||
Now we define the targeted root as $x_1$ and make the approximation that all of the
|
||||
other roots are equidistant from the targeted root, which means:
|
||||
|
||||
\begin{equation}
|
||||
x - x_i = b, i=2,3,...,m
|
||||
\end{equation}
|
||||
|
||||
\noindent
|
||||
We can then rewrite $G_1$ and $G_2$ as:
|
||||
|
||||
\begin{align}
|
||||
G_1 &= \frac{1}{a} + \frac{n-1}{b} \\
|
||||
G_2 &= \frac{1}{a^2} + \frac{n-1}{b^2}
|
||||
\end{align}
|
||||
|
||||
\noindent
|
||||
Which may be solved for $a$ in terms of $G_1$, $G_2$:
|
||||
|
||||
\begin{equation}
|
||||
a = \frac{n}{G_1 \pm \sqrt{(n-1)(nG_2 - G_1^2)}}
|
||||
\end{equation}
|
||||
|
||||
\noindent
|
||||
With corresponding iteration function:
|
||||
|
||||
\begin{equation}
|
||||
x_{i+1} = x_i - \frac{n g(x_i)}{g'(x_i) \pm \sqrt{(n-1)^2 f'(x_i)^2 - n (n-1) f(x_i)
|
||||
f''(x_i)}}
|
||||
\end{equation}
|
||||
|
||||
This iteration scheme can be shown to be globally convergent, regardless of the initial
|
||||
guess. More relevantly, Conway also showed that the application of this method to
|
||||
Kepler's equation was shown to converge with similar speed to many of the best common
|
||||
higher order Newton-Raphson solvers. However, LaGuerre's method was also found to be
|
||||
incredibly robust, converging to the correct value for every one of Conway's 500,000
|
||||
tests. Because of this robustness, it is very useful for propagating spacecraft states.
|
||||
guess. Conway also showed that the application of this method to Kepler's equation was shown
|
||||
to converge with similar speed to many of the best common higher order Newton-Raphson
|
||||
solvers. However, LaGuerre's method was also found to be incredibly robust, converging to
|
||||
the correct value for every one of Conway's 500,000 tests. Because of this robustness, it is
|
||||
useful for solving Kepler's equation.
|
||||
|
||||
\section{Interplanetary Considerations}\label{interplanetary}
|
||||
\section{Interplanetary Trajectories}\label{interplanetary}
|
||||
|
||||
In interplanetary travel, the primary body most responsible for gravitational forces might
|
||||
be a number of different bodies, dependent on the phase of the mission. In fact, at some
|
||||
@@ -378,21 +291,22 @@
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{fig/patched_conics}
|
||||
\includegraphics[width=0.8\textwidth]{LaTeX/fig/patched_conics}
|
||||
\caption{Patched Conics Example Figure}
|
||||
\label{patched_conics_fig}
|
||||
\end{figure}
|
||||
|
||||
This effectively breaks the trajectory into a series of arcs each governed by a distinct
|
||||
Two-Body problem patched together by distinct transition points. These transition points
|
||||
occur along the spheres of influence of the planets nearest to the spacecraft.
|
||||
occur along the spheres of influence of the planets nearest to the spacecraft. A
|
||||
conceptual example of this process, labeled the method of patched conics, appears in
|
||||
Figure~\ref{patched_conics_fig}.
|
||||
|
||||
Therefore, we must understand how to convert our spacecraft's state from the Sun frame
|
||||
to the planetary frame as it crosses this boundary. An elliptical orbit about the sun
|
||||
will have enough orbital energy to represent a hyperbolic orbit around the planet. So we
|
||||
first need to determine the velocity of the spacecraft relative to the planet as it
|
||||
crosses the SOI, which we can determine by subtraction \cite{vallado2001fundamentals}:
|
||||
|
||||
\begin{equation}
|
||||
\vec{v}_{sc/p} = \vec{v}_{sc/sun} - \vec{v}_{planet/sun}
|
||||
\end{equation}
|
||||
@@ -400,24 +314,21 @@
|
||||
Since the orbit around the planet is hyperbolic, in order to characterize the hyperbola
|
||||
we must determine the velocity of the spacecraft when it has infinite distance relative
|
||||
to the planet. Since this never occurs, a further approximation is made that the
|
||||
velocity that the spacecraft has (relative to the planet) as it crosses the SOI can be
|
||||
modeled as the $\vec{v}_\infty$ of that hyperbolic arc.
|
||||
velocity of the spacecraft (relative to the planet) as it crosses the SOI can be modeled
|
||||
as the $\vec{v}_\infty$ of that hyperbolic arc.
|
||||
|
||||
As an example, we may wish to determine the velocity relative to the planet that the
|
||||
spacecraft has at the periapsis of its hyperbolic trajectory during the flyby. This
|
||||
could be useful, perhaps, for sizing the $\Delta V<$ required during the insertion stage
|
||||
could be useful, perhaps, for sizing the $\Delta V$ required during the insertion stage
|
||||
of the mission if the spacecraft is intended to be captured into an elliptical orbit
|
||||
around its target planet. For a given incoming hyperbolic $\vec{v}_\infty$, we can first
|
||||
determine the specific mechanical energy of the hyperbola at infinite distance by using
|
||||
Equation~\ref{energy}:
|
||||
|
||||
\begin{equation}
|
||||
\xi = \frac{v^2}{2} - \frac{\mu}{r} = \frac{v_\infty^2}{2}
|
||||
\end{equation}
|
||||
|
||||
We can then leverage the conservation of energy to determine the velocity at a
|
||||
particular point, $r_{ins}$:
|
||||
|
||||
\begin{align}
|
||||
\xi_{ins} &= \frac{v_{ins}^2}{2} - \frac{\mu}{r_{ins}} \\
|
||||
\xi_{ins} &= \xi_\infty = \frac{v_\infty^2}{2} \\
|
||||
@@ -426,31 +337,29 @@
|
||||
|
||||
\subsection{Launch Considerations}
|
||||
|
||||
Generally speaking, an interplanetary mission begins with launch. For a satellite of
|
||||
given size, a certain amount of orbital energy can be imparted to the satellite by the
|
||||
launch vehicle. In practice, this value, for a particular mission, is actually
|
||||
determined as a parameter of the mission trajectory to be optimized. The excess velocity
|
||||
at infinity of the hyperbolic orbit of the spacecraft that leaves the Earth can be used
|
||||
to derive the launch energy. This is usually qualified as the quantity $C_3$, which is
|
||||
actually double the kinetic orbital energy with respect to the Sun, or simply the square
|
||||
of the excess hyperbolic velocity at infinity\cite{wie1998space}.
|
||||
For a satellite of given size, a certain amount of orbital energy can be imparted to the
|
||||
satellite by the launch vehicle. In practice, this value, for a particular mission, is
|
||||
actually determined as a parameter of the mission trajectory to be optimized. The excess
|
||||
velocity at infinity of the hyperbolic orbit of the spacecraft that leaves the Earth can
|
||||
be used to derive the launch energy. This is usually qualified as the quantity $C_3$,
|
||||
which is actually double the kinetic orbital energy with respect to the Sun, or simply
|
||||
the square of the excess hyperbolic velocity at infinity\cite{wie1998space}.
|
||||
|
||||
This algorithm will assume that the initial trajectory at the beginning of the mission
|
||||
will be some hyperbolic orbit with velocity enough to leave the Earth. That initial
|
||||
$v_\infty$ will be used as a tunable parameter in the NLP solver. This allows the
|
||||
mission designer to include the launch $C_3$ in the cost function and, hopefully,
|
||||
$v_\infty$ will be used as a tunable parameter in the optimization routine. This allows
|
||||
the mission designer to include the launch $C_3$ in the cost function and, hopefully,
|
||||
determine the mission trajectory that includes the least initial launch energy. This can
|
||||
then be fed back into a mass-$C_3$ curve for prospective launch providers to determine
|
||||
what the maximum mass any launch provider is capable of imparting that specific $C_3$
|
||||
to.
|
||||
|
||||
A similar approach is taken at the end of the mission. This algorithm doesn't attempt to
|
||||
exactly match the velocity of the planet at the end of the mission. Instead, the excess
|
||||
hyperbolic velocity is also treated as a parameter that can be minimized by the cost
|
||||
function. If a mission is to then end in insertion, a portion of the mass budget can
|
||||
then be used for an impulsive thrust engine, which can provide a final insertion burn at
|
||||
the end of the mission. This approach also allows flexibility for missions that might
|
||||
end in a flyby rather than insertion.
|
||||
A similar approach is taken at the end of the trajectory. This algorithm doesn't attempt
|
||||
to exactly match the velocity of the planet. Instead, the excess hyperbolic velocity is
|
||||
also treated as a parameter that can be minimized by the cost function. If a trajectory
|
||||
is to then end in insertion, a portion of the mass budget can then be used for an
|
||||
impulsive thrust engine, which can provide a final insertion burn. This approach also
|
||||
allows flexibility for missions that might end in a flyby rather than insertion.
|
||||
|
||||
\subsection{Gravity Assist Maneuvers}
|
||||
|
||||
@@ -480,8 +389,8 @@
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{fig/flyby}
|
||||
\caption{Visualization of velocity changes during a gravity assist}
|
||||
\includegraphics[width=0.8\textwidth]{LaTeX/fig/flyby}
|
||||
\caption{Velocity changes during a gravity assist}
|
||||
\label{grav_assist_fig}
|
||||
\end{figure}
|
||||
|
||||
@@ -491,7 +400,7 @@
|
||||
turning angle of this bend. In doing so, one can effectively achieve a (restricted) free
|
||||
impulsive thrust event.
|
||||
|
||||
\subsection{Flyby Periapsis}
|
||||
\subsection{Flyby Periapsis Altitude}
|
||||
|
||||
Now that we understand gravity assists, the natural question is then how to leverage
|
||||
them for achieving certain velocity changes\cite{cho2017b}. But first, we must consider
|
||||
@@ -500,7 +409,6 @@
|
||||
mentioned in the previous section, given an excess hyperbolic velocity entering the
|
||||
planet's sphere of influence ($\vec{v}_{\infty, in}$) and a target excess hyperbolic
|
||||
velocity as the spacecraft leaves the sphere of influence ($\vec{v}_{\infty, out}$):
|
||||
|
||||
\begin{equation}\label{turning_angle_eq}
|
||||
\delta = \arccos \left( \frac{\vec{v}_{\infty,in} \cdot
|
||||
\vec{v}_{\infty,out}}{|\vec{v}_{\infty,in}| |\vec{v}_{\infty,out}|} \right)
|
||||
@@ -510,12 +418,10 @@
|
||||
that we must target in order to achieve the required turning angle. The periapsis of the
|
||||
flyby, however, can provide a useful check on what turning angles are possible for a
|
||||
given flyby, since the periapsis:
|
||||
|
||||
\begin{equation}
|
||||
\begin{equation}\label{periapsis_eq}
|
||||
r_p = \frac{\mu}{v_\infty^2} \left[ \frac{1}{\sin\left(\frac{\delta}{2}\right)} - 1 \right]
|
||||
\end{equation}
|
||||
|
||||
Cannot be lower than some safe value that accounts for the radius of the planet and
|
||||
cannot be lower than some safe value that accounts for the radius of the planet and
|
||||
perhaps its atmosphere if applicable.
|
||||
|
||||
\subsection{Multiple Gravity Assist Techniques}
|
||||
@@ -543,19 +449,21 @@
|
||||
here for its robustness given any initial guess \cite{battin1984elegant}.
|
||||
|
||||
Firstly, some geometric considerations must be accounted for. For any initial
|
||||
position, $\vec{r}_0$, and final position, $\vec{r}_f$, and time of flight $\Delta
|
||||
position, $\vec{r}_1$, and final position, $\vec{r}_2$, and time of flight $\Delta
|
||||
t$, there are actually two separate transfer orbits that can connect the two points
|
||||
with paths that traverse less than one full orbit. For each of these, there are
|
||||
with paths that traverse less than one full orbit. Therefore, there are
|
||||
actually then two trajectories that can connect the points
|
||||
\cite{vallado2001fundamentals}. The first of the two will have a $\Delta \theta$ of
|
||||
less than 180 degrees, which we classify as a Type I trajectory, and the second will
|
||||
have a $\Delta \theta$ of greater than 180 degrees, which we call a Type II
|
||||
trajectory. They will also differ in their direction of motion (clockwise or
|
||||
counter-clockwise about the focus). This can be seen in Figure~\ref{type1type2}.
|
||||
counter-clockwise about the focus). This can be seen in Figure~\ref{type1type2},
|
||||
where both of the Lambert's solutions are presented for sample points in an orbit
|
||||
around the Sun.
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{fig/lamberts}
|
||||
\includegraphics[width=0.8\textwidth]{LaTeX/fig/lamberts}
|
||||
\caption{Visualization of the possible solutions to Lambert's Problem}
|
||||
\label{type1type2}
|
||||
\end{figure}
|
||||
@@ -563,20 +471,16 @@
|
||||
The iteration used in this thesis will start by first calculating the change in true
|
||||
anomaly, $\Delta \theta$, as well as the cosine of this value, which can be found
|
||||
by:
|
||||
|
||||
\begin{align}
|
||||
\cos (\Delta \theta) &= \frac{\vec{r}_1 \cdot \vec{r}_2}{|\vec{r}_1| |\vec{r}_2|} \\
|
||||
\Delta \theta &= \arctan(y_2/x_2) - \arctan(y_1/x_1)
|
||||
\end{align}
|
||||
|
||||
The direction of motion is then chosen such that counter-clockwise orbits are
|
||||
considered, as travelling in the same direction as the planets is generally more
|
||||
efficient. Next, the variable $A$ is defined:
|
||||
|
||||
\begin{equation}
|
||||
A = DM \sqrt{|r_1| |r_2| (1 - \cos(\Delta \theta))}
|
||||
\end{equation}
|
||||
|
||||
A is independent of $\psi$, and therefore won't need updating as the iteration
|
||||
proceeds. Then $\psi$ is initialized to any number within its bounds
|
||||
($[-4\pi,4\pi^2]$), arbitrarily set to 0, representing a parabolic arc as a starting
|
||||
@@ -587,7 +491,6 @@
|
||||
time of flight matches the expected value to within a provided tolerance. In order
|
||||
to calculate the time of flight at each step, we must first calculate some useful
|
||||
coefficients:
|
||||
|
||||
\begin{equation}\label{loop_start}
|
||||
c_2 = \begin{cases}
|
||||
\frac{1-\cos(\sqrt{\psi})}{\psi} \quad &\text{if} \, \psi > 10^{-6} \\
|
||||
@@ -595,31 +498,24 @@
|
||||
1/2 \quad &\text{if} \, 10^{-6} > \psi > -10^{-6}
|
||||
\end{cases}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
c_3 = \begin{cases}
|
||||
\frac{\sqrt{\psi} - \sin sqrt{\psi}}{\psi^{3/2}} \quad &\text{if} \, \psi > 10^{-6} \\
|
||||
\frac{\sqrt{\psi} - \sin \sqrt{\psi}}{\psi^{3/2}} \quad &\text{if} \, \psi > 10^{-6} \\
|
||||
\frac{\sinh\sqrt{-\psi} - \sqrt{-\psi}}{(-\psi)^{3/2}} \quad &\text{if} \, \psi < -10^{-6} \\
|
||||
1/6 \quad &\text{if} \, 10^{-6} > \psi > -10^{-6}
|
||||
\end{cases}
|
||||
\end{equation}
|
||||
|
||||
\noindent
|
||||
Where the conditions of this piecewise function represent the elliptical,
|
||||
hyperbolic, and parabolic cases, respectively. Once we have these, we can calculate
|
||||
another variable, $y$:
|
||||
|
||||
\begin{equation}
|
||||
y = |r_1| + |r_2| + \frac{A (c_3 \psi - 1)}{\sqrt{c_2}}
|
||||
\end{equation}
|
||||
|
||||
We can then finally calculate the variable $\chi$, and from that, the time of
|
||||
flight:
|
||||
|
||||
\begin{equation}
|
||||
\chi = sqrt{\frac{y}{c_2}}
|
||||
\chi = \sqrt{\frac{y}{c_2}}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\Delta t = \frac{c_3 \chi^3 + A \sqrt{y}}{\sqrt{c_2}}
|
||||
\end{equation}
|
||||
@@ -632,22 +528,17 @@
|
||||
|
||||
The resulting $f$ and $g$ functions (and the derivative of $g$, $\dot{g}$) can then
|
||||
be calculated:
|
||||
|
||||
\begin{align}
|
||||
f &= 1 - \frac{y}{|r_1|} \\
|
||||
g &= A \sqrt{\frac{y}{\mu}} \\
|
||||
\dot{g} &= 1 - \frac{y}{|r_2|}
|
||||
\end{align}
|
||||
|
||||
And from these, we can calculate the velocities of the transfer points as:
|
||||
|
||||
\begin{align}
|
||||
\vec{v}_1 &= \frac{\vec{r}_1 - f \vec{r}_2}{g} \\
|
||||
\vec{v}_2 &= \frac{\dot{g} \vec{r}_2 - \vec{r}_1}{g}
|
||||
\end{align}
|
||||
|
||||
\noindent
|
||||
Fully constraining the connecting orbit.
|
||||
Fully describing the connecting path with the specified flight time.
|
||||
|
||||
\subsubsection{Planetary Ephemeris}
|
||||
|
||||
@@ -660,8 +551,8 @@
|
||||
|
||||
The primary use of SPICE in this thesis, however, was to determine the planetary
|
||||
ephemeris at a known epoch. Using the NAIF0012 and DE430 kernels, ephemeris in the
|
||||
ecliptic plane J2000 frame could be easily determined for a given epoch, provided as
|
||||
a decimal Julian Day since the J2000 epoch.
|
||||
International Celestial Reference Frame could be easily determined for a given
|
||||
epoch, provided as a decimal Julian Day since the J2000 epoch.
|
||||
|
||||
\subsubsection{Porkchop Plots}
|
||||
|
||||
@@ -681,24 +572,17 @@
|
||||
Using porkchop plots such as the one in Figure~\ref{porkchop}, mission designers can
|
||||
quickly visualize which natural trajectories are possible between planets. Using the
|
||||
fact that incoming and outgoing $v_\infty$ magnitudes must be the same for a flyby,
|
||||
a savvy mission designer can even begin to work out what combinations of flybys
|
||||
might be possible for a given timeline, spacecraft state, and planet selection.
|
||||
a mission designer can even begin to work out what combinations of flybys might be
|
||||
possible for a given timeline, spacecraft state, and planet selection.
|
||||
|
||||
%TODO: Create my own porkchop plot
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{fig/porkchop}
|
||||
\includegraphics[width=\textwidth]{LaTeX/fig/porkchop}
|
||||
\caption{A sample porkchop plot of an Earth-Mars transfer}
|
||||
\label{porkchop}
|
||||
\end{figure}
|
||||
|
||||
However, this is an impulsive thrust-centered approach. The solution to Lambert's
|
||||
problem assumes a natural trajectory. A natural trajectory is unnecessary when the
|
||||
trajectory can be modified by a continuous thrust profile along the arc. Therefore,
|
||||
for the hybrid problem of optimizing both flyby selection and thrust profiles,
|
||||
porkchop plots are less helpful, and an algorithmic approach is preferred.
|
||||
|
||||
\section{Low Thrust Considerations} \label{low_thrust}
|
||||
\section{Modeling Low Thrust Control} \label{low_thrust}
|
||||
|
||||
In this section, we'll discuss the intricacies of continuous low-thrust trajectories in
|
||||
particular. There are many methods for optimizing such profiles and we'll briefly discuss
|
||||
@@ -706,7 +590,7 @@
|
||||
as introduce the concept of a control law and the notation used in this thesis for modelling
|
||||
low-thrust trajectories more simply.
|
||||
|
||||
\subsection{Specific Impulse}
|
||||
\subsection{Engine Model}
|
||||
|
||||
The primary advantage of continuous thrust methods over their impulsive counterparts is
|
||||
in their fuel-efficiency in generating changes in velocity. Put specifically, all
|
||||
@@ -718,45 +602,34 @@
|
||||
This efficiency is often captured in a single variable called specific impulse, often
|
||||
denoted as $I_{sp}$. We can derive the specific impulse by starting with the rocket
|
||||
thrust equation\cite{sutton2016rocket}:
|
||||
|
||||
\begin{equation}
|
||||
F = \dot{m} v_e + \Delta p A_e
|
||||
\end{equation}
|
||||
|
||||
\noindent
|
||||
Where $F$ is the thrust imparted, $\dot{m}$ is the fuel mass rate, $v_e$ is the exhaust
|
||||
velocity of the fuel, $\Delta p$ is the change in pressure across the exhaust opening,
|
||||
and $A_e$ is the area of the exhaust opening. We can then define a new variable
|
||||
$v_{eq}$, such that the thrust equation becomes:
|
||||
|
||||
\begin{align}
|
||||
v_{eq} &= v_e - \frac{\Delta p A_e}{\dot{m}} \\
|
||||
v_{eq} &= v_e + \frac{\Delta p A_e}{\dot{m}} \\
|
||||
F &= \dot{m} v_{eq} \label{isp_1}
|
||||
\end{align}
|
||||
|
||||
\noindent
|
||||
And we can then take the integral of this value with respect to time to find the total
|
||||
impulse, dividing by the weight of the fuel to derive the specific impulse:
|
||||
|
||||
\begin{align}
|
||||
I &= \int F dt = \int \dot{m} v_{eq} dt = m_e v_{eq} \\
|
||||
I_{sp} &= \frac{I}{m_e g_0} = \frac{m_e v_{eq}}{m_e g_0} = \frac{v_{eq}}{g_0}
|
||||
\end{align}
|
||||
|
||||
Plugging Equation~\ref{isp_1} into the previous equation we can derive the following
|
||||
formula for $I_{sp}$:
|
||||
|
||||
\begin{equation} \label{isp_real}
|
||||
I_{sp} = \frac{F}{\dot{m} g_0}
|
||||
\end{equation}
|
||||
|
||||
\noindent
|
||||
Which is generally taken to be a value with units of seconds and effectively represents
|
||||
the efficiency with which a thruster converts mass to thrust.
|
||||
|
||||
\subsection{Sims-Flanagan Transcription}
|
||||
|
||||
this thesis chose to use a model well suited for modeling low-thrust paths: the
|
||||
In this thesis the following approach is used for modeling low-thrust paths: the
|
||||
Sims-Flanagan transcription (SFT)\cite{sims1999preliminary}. The SFT allows for
|
||||
flexibility in the trade-off between fidelity and performance, which makes it very
|
||||
useful for this sort of preliminary analysis.
|
||||
@@ -769,7 +642,7 @@
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.6\textwidth]{fig/sft}
|
||||
\includegraphics[width=0.6\textwidth]{LaTeX/fig/sft}
|
||||
\caption{Example of an orbit raising using the Sims-Flanagan Transcription with 7
|
||||
Sub-Trajectories}
|
||||
\label{sft_fig}
|
||||
@@ -792,7 +665,7 @@
|
||||
continuous low-thrust trajectory within the Two-Body Problem, with only
|
||||
linearly-increasing computation time\cite{sims1999preliminary}.
|
||||
|
||||
\subsection{Low-Thrust Control Laws}
|
||||
\subsection{Low-Thrust Control Vector Description}
|
||||
|
||||
In determining a low-thrust arc, a number of variables must be accounted for and,
|
||||
ideally, optimized. Generally speaking, this means that a control law must be determined
|
||||
@@ -805,24 +678,23 @@
|
||||
The methods for determining this direction varies greatly depending on the particular
|
||||
control law chosen for that mission. Often, this process involves first determining a
|
||||
useful frame to think about the kinematics of the spacecraft. In this case, we'll use a
|
||||
frame often used in these low-thrust control laws: the spacecraft $\hat{R} \hat{\theta}
|
||||
\hat{H}$ frame. In this frame, the $\hat{R}$ direction is the radial direction from the
|
||||
center of the primary to the center of the spacecraft. The $\hat{H}$ hat is
|
||||
perpendicular to this, in the direction of orbital momentum (out-of-plane) and the
|
||||
$\hat{\theta}$ direction completes the right-handed orthonormal frame.
|
||||
frame often used in these low-thrust control laws: the spacecraft-centered $\hat{R}
|
||||
\hat{\theta} \hat{H}$ frame. In this frame, the $\hat{R}$ direction is the radial
|
||||
direction from the center of the primary to the center of the spacecraft. The $\hat{H}$
|
||||
hat is perpendicular to this, in the direction of orbital momentum (out-of-plane) and
|
||||
the $\hat{\theta}$ direction completes the right-handed orthonormal triad.
|
||||
|
||||
This frame is useful because, for a given orbit, especially a nearly circular one, the
|
||||
$\hat{\theta}$ direction is nearly aligned with the velocity direction for that orbit at
|
||||
that moment. This allows us to define a set of two angles, which we'll call $\alpha$ and
|
||||
$\beta$, to represent the in and out of plane pointing direction of the thrusters. This
|
||||
convention is useful because a $(0,0)$ set represents a thrust force more or less
|
||||
directly in line with the direction of the velocity, a commonly useful thrusting
|
||||
direction for most effectively increasing (or decreasing if negative) the angular
|
||||
momentum and orbital energy of the trajectory.
|
||||
convention is useful because, in a near-circular path, a $(0,0)$ set represents a thrust
|
||||
force more or less directly in line with the direction of the velocity, a commonly
|
||||
useful thrusting direction for most effectively increasing (or decreasing if negative)
|
||||
the angular momentum and orbital energy of the trajectory.
|
||||
|
||||
Using these conventions, we can then redefine our thrust vector in terms of the $\alpha$
|
||||
and $\beta$ angles in the chosen frame:
|
||||
|
||||
\begin{align}
|
||||
F_r &= F \cos(\beta) \sin (\alpha) \\
|
||||
F_\theta &= F \cos(\beta) \cos (\alpha) \\
|
||||
@@ -831,12 +703,12 @@
|
||||
|
||||
\subsubsection{Thrust Magnitude}
|
||||
|
||||
However, there is actually another variable that can be varied by the majority of
|
||||
electric thrusters. Either by controlling the input power of the thruster or the duty
|
||||
cycle, the thrust magnitude can also be varied, limited by the maximum thrust available
|
||||
to the thruster. Not all control laws allow for this fine-tuned control of the thruster.
|
||||
There is another variable that can be varied by the majority of electric thrusters.
|
||||
Either by controlling the input power of the thruster or the duty cycle, the thrust
|
||||
magnitude can also be varied, limited by the maximum thrust available to the thruster.
|
||||
Not all control laws allow for this fine-tuned control of the thruster.
|
||||
|
||||
The algorithm used in this thesis does vary the magnitude of the thrust control. In
|
||||
The approach used in this thesis does vary the magnitude of the thrust control. In
|
||||
certain cases it actually can be useful to have some fine-tuned control over the
|
||||
magnitude of the thrust. Since the optimization in this algorithm is automatic, it is
|
||||
relatively straightforward to consider the control thrust as a 3-dimensional vector in
|
||||
@@ -857,21 +729,14 @@
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{fig/low_efficiency}
|
||||
\includegraphics[width=\textwidth]{LaTeX/fig/low_efficiency}
|
||||
\caption{Graphic of an orbit-raising with a low efficiency cutoff}
|
||||
\label{low_efficiency_fig}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{fig/high_efficiency}
|
||||
\includegraphics[width=\textwidth]{LaTeX/fig/high_efficiency}
|
||||
\caption{Graphic of an orbit-raising with a high efficiency cutoff}
|
||||
\label{high_efficiency_fig}
|
||||
\end{figure}
|
||||
|
||||
All of this is, of course, also true for impulsive trajectories. However, since the
|
||||
thrust presence for those trajectories are generally taken to be impulse functions, the
|
||||
control laws can afford to be much less complicated for a given mission goal, by simply
|
||||
thrusting only at the moment on the orbit when the transition will be most efficient.
|
||||
For a low-thrust mission, however, the control law must be continuous rather than
|
||||
discrete and therefore the control law inherently gains a lot of complexity.
|
||||
|
||||
@@ -6,10 +6,11 @@
|
||||
highly non-linear, unpredictable systems such as this. The field that developed to
|
||||
approach this problem is known as Non-Linear Programming (NLP) Optimization.
|
||||
|
||||
A Non-Linear Programming Problem is defined by an attempt to optimize a function
|
||||
A Non-Linear Programming Problem involves finding a solution that optimizes a function
|
||||
$f(\vec{x})$, subject to constraints $\vec{g}(\vec{x}) \le 0$ and $\vec{h}(\vec{x}) = 0$
|
||||
where $n$ is a positive integer, $x$ is any subset of $R^n$, $g$ and $h$ can be vector
|
||||
valued functions of any size, and at least one of $f$, $g$, and $h$ must be non-linear.
|
||||
valued functions of any size, and at least one of $f$, $\vec{g}$, and $\vec{h}$ must be
|
||||
non-linear.
|
||||
|
||||
There are, however, two categories of approaches to solving an NLP. The first category,
|
||||
indirect methods, involve declaring a set of necessary and/or sufficient conditions for
|
||||
@@ -20,10 +21,10 @@
|
||||
|
||||
The other category is the direct methods. In a direct optimization problem, the cost
|
||||
function itself provides a value that an iterative numerical optimizer can measure
|
||||
itself against. The optimal solution is then found by varying the inputs $x$ until the
|
||||
cost function is reduced to a minimum value, often determined by its derivative
|
||||
jacobian. A number of tools have been developed to optimize NLPs via this direct method
|
||||
in the general case.
|
||||
itself against. The optimal solution is then found by varying the inputs $\vec{x}$ until
|
||||
the cost function is reduced to a minimum value, often determined by its derivative
|
||||
jacobian. A number of tools have been developed to formulate NLPs for optimization via
|
||||
this direct method in the general case.
|
||||
|
||||
Both of these methods have been applied to the problem of low-thrust interplanetary
|
||||
trajectory optimization \cite{Casalino2007IndirectOM} to find local optima over
|
||||
@@ -40,7 +41,7 @@
|
||||
Therefore, a direct optimization method was leveraged by transcribing the problem into
|
||||
an NLP and using IPOPT to find the local minima.
|
||||
|
||||
\subsubsection{Non-Linear Solvers}
|
||||
\subsection{Non-Linear Solvers}
|
||||
|
||||
One of the most common packages for the optimization of NLP problems is
|
||||
SNOPT\cite{gill2005snopt}, which is a proprietary package written primarily using a
|
||||
@@ -48,7 +49,7 @@
|
||||
University. It uses a sparse sequential quadratic programming algorithm as its
|
||||
back-end optimization scheme.
|
||||
|
||||
Another common NLP optimization packages (and the one used in this implementation)
|
||||
Another common NLP optimization package (and the one used in this implementation)
|
||||
is the Interior Point Optimizer or IPOPT\cite{wachter2006implementation}. It uses
|
||||
an Interior Point Linesearch Filter Method and was developed as an open-source
|
||||
project by the organization COIN-OR under the Eclipse Public License.
|
||||
@@ -63,7 +64,7 @@
|
||||
libraries that port these are quite modular in the sense that multiple algorithms can be
|
||||
tested without changing much source code.
|
||||
|
||||
\subsubsection{Interior Point Linesearch Method}
|
||||
\subsection{Interior Point Linesearch Method}
|
||||
|
||||
As mentioned above, this project utilized IPOPT which leveraged an Interior Point
|
||||
Linesearch method. A linesearch algorithm is one which attempts to find the optimum
|
||||
@@ -74,12 +75,7 @@
|
||||
step the initial guess, now labeled $x_{k+1}$ after the addition of the ``step''
|
||||
vector and iterates this process until predefined termination conditions are met.
|
||||
|
||||
In this case, the IPOPT algorithm was used, not as an optimizer, but as a solver. For
|
||||
reasons that will be explained in the algorithm description in Section~\ref{algorithm} it
|
||||
was sufficient merely that the non-linear constraints were met, therefore optimization (in
|
||||
the particular step in which IPOPT was used) was unnecessary.
|
||||
|
||||
\subsubsection{Shooting Schemes for Solving a Two-Point Boundary Value Problem}
|
||||
\subsection{Shooting Schemes for Solving a Two-Point Boundary Value Problem}
|
||||
|
||||
One straightforward approach to trajectory corrections is a single shooting
|
||||
algorithm, which propagates a state, given some control variables forward in time to
|
||||
@@ -87,39 +83,30 @@
|
||||
iterative process, using the correction scheme, until the target state and the
|
||||
propagated state matches.
|
||||
|
||||
As an example, we can consider the Two-Point Boundary Value Problem (TPBVP) defined
|
||||
by:
|
||||
|
||||
As an example, we can consider the one-dimensional Two-Point Boundary Value Problem
|
||||
(TPBVP) defined by:
|
||||
\begin{equation}
|
||||
y''(t) = f(t, y(t), y'(t)), y(t_0) = y_0, y(t_f) = y_f
|
||||
\end{equation}
|
||||
|
||||
\noindent
|
||||
We can then redefine the problem as an initial-value problem:
|
||||
|
||||
\begin{equation}
|
||||
y''(t) = f(t, y(t), y'(t)), y(t_0) = y_0, y'(t_0) = x
|
||||
y''(t) = f(t, y(t), y'(t)), y(t_0) = y_0, y'(t_0) = \dot{y}_0
|
||||
\end{equation}
|
||||
|
||||
\noindent
|
||||
With $y(t,x)$ as a solution to that problem. Furthermore, if $y(t_f, x) = y_f$, then
|
||||
the solution to the initial-value problem is also the solution to the TPBVP as well.
|
||||
Therefore, we can use a root-finding algorithm, such as the bisection method,
|
||||
Newton's Method, or even Laguerre's method, to find the roots of:
|
||||
|
||||
\begin{equation}
|
||||
F(x) = y(t_f, x) - y_f
|
||||
\end{equation}
|
||||
|
||||
\noindent
|
||||
To find the solution to the IVP at $x_0$, $y(t_f, x_0)$ which also provides a
|
||||
solution to the TPBVP. This technique for solving a Two-Point Boundary Value
|
||||
Problem can be visualized in Figure~\ref{single_shoot_fig}.
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{fig/single_shoot}
|
||||
\caption{Visualization of a single shooting technique over a trajectory arc}
|
||||
\includegraphics[width=\textwidth]{LaTeX/fig/single_shoot}
|
||||
\caption{Single shooting over a trajectory arc}
|
||||
\label{single_shoot_fig}
|
||||
\end{figure}
|
||||
|
||||
@@ -138,24 +125,23 @@
|
||||
each of these points we can then define a separate control, which may include the
|
||||
states themselves. The end state of each arc and the beginning state of the next
|
||||
must then be equal for a valid arc (with the exception of velocity discontinuities
|
||||
if allowed for maneuvers at that point), as well as the final state matching the
|
||||
target final state.
|
||||
if allowed for maneuvers or gravity assists at that point), as well as the final
|
||||
state matching the target final state.
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{fig/multiple_shoot}
|
||||
\includegraphics[width=\textwidth]{LaTeX/fig/multiple_shoot}
|
||||
\caption{Visualization of a multiple shooting technique over a trajectory arc}
|
||||
\label{multiple_shoot_fig}
|
||||
\end{figure}
|
||||
|
||||
In this example, it can be seen that there are now more constraints (places where
|
||||
the states need to match up, creating an $x_{error}$ term) as well as control
|
||||
the states need to match up, creating an $\vec{x}_{error}$ term) as well as control
|
||||
variables (the $\Delta V$ terms in the figure). This technique actually lends itself
|
||||
very well to low-thrust arcs and, in fact, Sims-Flanagan Transcribed low-thrust arcs
|
||||
in particular, because there actually are control thrusts to be optimized at a
|
||||
variety of different points along the orbit. This is, however, not an exhaustive
|
||||
description of ways that multiple shooting can be used to optimize a trajectory,
|
||||
simply the most convenient for low-thrust arcs.
|
||||
description of ways that multiple shooting can be used to optimize a trajectory.
|
||||
|
||||
\section{Monotonic Basin Hopping Algorithms}
|
||||
|
||||
|
||||
88
Makefile
@@ -1,68 +1,42 @@
|
||||
OPTIONS = markdown+yaml_metadata_block+smart
|
||||
|
||||
NOTES = $(wildcard prelim_notes/*.md)
|
||||
NOTES_PDFS = $(patsubst %.md,%.pdf,$(NOTES))
|
||||
|
||||
THESIS = LaTeX/thesis.tex
|
||||
SRC_DIR = LaTeX/
|
||||
THESIS_SRC_NAMES = thesis.tex thesis.bib approach.tex conclusion.tex introduction.tex \
|
||||
results.tex trajectory_design.tex trajectory_optimization.tex
|
||||
THESIS_SRC = $(addprefix $(SRC_DIR)/,$(THESIS_SRC_NAMES))
|
||||
THESIS_PRES_SRC_NAMES = presentation.tex presentation.bib
|
||||
THESIS_PRES_SRC = $(addprefix $(SRC_DIR)/,$(THESIS_PRES_SRC_NAMES))
|
||||
THESIS_PRES = presentation.pdf
|
||||
THESIS_PDF = thesis.pdf
|
||||
BUILD_DIR = temp/
|
||||
|
||||
all: $(THESIS_PDF) $(NOTES_PDFS)
|
||||
all: $(THESIS_PDF) $(THESIS_PRES)
|
||||
|
||||
$(NOTES_PDFS): $(NOTES)
|
||||
pandoc \
|
||||
--variable mainfont="Roboto" \
|
||||
--variable monofont="Fira Code" \
|
||||
--variable fontsize=11pt \
|
||||
--variable geometry:"top=1in, bottom=1in, left=1in, right=1in" \
|
||||
--variable geometry:letterpaper \
|
||||
-f markdown $< \
|
||||
-o $@
|
||||
$(BUILD_DIR):
|
||||
mkdir -p $(BUILD_DIR)
|
||||
|
||||
thesis_pdf/:
|
||||
mkdir $@
|
||||
$(BUILD_DIR)/$(THESIS_PDF): $(BUILD_DIR) $(THESIS_SRC)
|
||||
xelatex --output-directory $(BUILD_DIR) $(SRC_DIR)/thesis
|
||||
bibtex $(BUILD_DIR)/thesis
|
||||
xelatex --output-directory $(BUILD_DIR) $(SRC_DIR)/thesis
|
||||
xelatex --output-directory $(BUILD_DIR) $(SRC_DIR)/thesis
|
||||
|
||||
$(THESIS_PDF): $(THESIS) LaTeX/thesis.bib
|
||||
mkdir -p temp
|
||||
cp -r LaTeX/fig .
|
||||
cp -r LaTeX/flowcharts .
|
||||
cp -r LaTeX/thesis.tex .
|
||||
cp -r LaTeX/macros.tex .
|
||||
cp -r LaTeX/thesis.bib .
|
||||
cp -r LaTeX/thesis.cls .
|
||||
xelatex thesis
|
||||
bibtex thesis
|
||||
xelatex thesis
|
||||
xelatex thesis
|
||||
rm -rf fig
|
||||
rm -rf flowcharts
|
||||
cp thesis.pdf temp/.
|
||||
rm -rf macros.tex
|
||||
rm -rf thesis.*
|
||||
cp temp/thesis.pdf .
|
||||
rm -rf temp
|
||||
$(BUILD_DIR)/$(THESIS_PRES): $(BUILD_DIR) $(THESIS_PRES_SRC)
|
||||
xelatex --output-directory $(BUILD_DIR) $(SRC_DIR)/presentation
|
||||
bibtex $(BUILD_DIR)/presentation
|
||||
xelatex --output-directory $(BUILD_DIR) $(SRC_DIR)/presentation
|
||||
xelatex --output-directory $(BUILD_DIR) $(SRC_DIR)/presentation
|
||||
|
||||
$(THESIS_PDF): $(BUILD_DIR)/$(THESIS_PDF)
|
||||
cp $(BUILD_DIR)/thesis.pdf .
|
||||
|
||||
$(THESIS_PRES): $(BUILD_DIR)/$(THESIS_PRES)
|
||||
cp $(BUILD_DIR)/presentation.pdf .
|
||||
|
||||
.PHONY: clean revise
|
||||
|
||||
clean:
|
||||
rm -rf $(THESIS_PDF)
|
||||
rm -rf $(NOTES_PDFS)
|
||||
rm -rf thesis_pdf
|
||||
rm -rf $(THESIS_PRES)
|
||||
rm -rf $(BUILD_DIR)
|
||||
|
||||
revise: $(THESIS) LaTeX/thesis.bib
|
||||
mkdir -p temp
|
||||
cp -r LaTeX/fig .
|
||||
cp -r LaTeX/flowcharts .
|
||||
cp -r LaTeX/thesis.tex .
|
||||
cp -r LaTeX/macros.tex .
|
||||
cp -r LaTeX/thesis.bib .
|
||||
cp -r LaTeX/thesis.cls .
|
||||
xelatex thesis
|
||||
bibtex thesis
|
||||
xelatex thesis
|
||||
xelatex thesis
|
||||
rm -rf fig
|
||||
rm -rf flowcharts
|
||||
cp thesis.pdf temp/.
|
||||
rm -rf macros.tex
|
||||
rm -rf thesis.*
|
||||
cp temp/thesis.pdf .
|
||||
final: $(THESIS_PDF) $(THESIS_PRES)
|
||||
rm -rf $(BUILD_DIR)
|
||||
|
||||
29
archive/EMS_0.885200034193802
Normal file
@@ -0,0 +1,29 @@
|
||||
archive/EMS_0.885200034193802---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-09-20T14:03:44.662
|
||||
Launch V∞: [-0.9544125442488793, 4.650055637860991, 0.8829883975591813] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-2.686848874040082, 5.69557833738042, -0.3426867301634786] km/s
|
||||
V∞_out: [-5.006830246285463, 3.8244101442357286, -0.28590492992060296] km/s
|
||||
time of flight: 1.2959473202133252e8 seconds
|
||||
arrival date: 2028-10-29T12:35:56.662
|
||||
thrust profile: [-0.028074398281491695 0.03725829642101633 0.011493562796176157; -0.04057241823105847 -0.0036979634745522238 0.004188100162030408; -0.018576540265103334 -0.016670623079762328 -0.0036538504180610655; -0.00926818068907572 -0.029823872248843347 -0.00788998730301693; 0.0056536273790355335 -0.039471274595512786 -0.015505661293943124; 0.01795773380852956 -0.024832086810877792 -0.012157101567918709; 0.020276654954958836 -0.008918038755765955 -0.0074245383137495295; 0.026868221096269136 0.007263820280035479 -0.004654400052923847; 0.011894893359756988 0.03223774798632351 0.004633535267024402; -0.047141055295386355 0.040019079580037704 0.013364609633569504; -0.04520469085369964 -0.010120922532993988 0.0020777538652468844; -0.024235864777124916 -0.02628842319518715 -0.005178953753261158; -0.020104196631084845 -0.08663986569488229 -0.025957813503050115; 0.04562945777248198 -0.18858114469692783 -0.07388958835417316; 0.1654642046172344 -0.19639566019786459 -0.09899123711104271; 0.20836768567311814 -0.07684473602532182 -0.06621134288112417; 0.17451643722399424 0.054856569336227734 -0.019947666848185868; 0.09171150949789851 0.24766459803783164 0.03479747010758981; -0.23524183946575974 0.2601294101394598 0.07688820773607916; -0.21879974186036938 -0.008020833470565012 0.021595583194403873] %
|
||||
Phase 2:
|
||||
Planet: Saturn
|
||||
V∞_in: [2.746703786000276, 2.98969776442552, -1.0550945579969648] km/s
|
||||
V∞_out: [-2.364529965587132, -1.1050142331661583, -3.0819068226828907] km/s
|
||||
time of flight: 2.2586692153285405e8 seconds
|
||||
arrival date: 2035-12-26T17:24:37.662
|
||||
thrust profile: [-0.17155197556204754 -0.12803647772004534 -0.0010987042854903337; -0.0035589134881411667 -0.06490801713537507 0.0007426295065205218; 0.25580929199297914 -0.3791453683925915 0.015541598652070847; 0.9999998062826643 -0.5828839766311769 0.041611387112901736; 0.9999998812648976 -0.13591929443541234 0.04367451973443414; 0.9999999269970672 0.45531454218125245 0.04521667689652659; 0.9999999228048742 0.9999999183342614 0.04613770201743983; 0.840757310010811 0.9999999579385513 0.026030995407658575; 0.11987829006679744 1.0 -0.0008893319442928411; -0.16626331436648592 0.8682210906007626 -0.017523530916658536; -0.010554991808101162 0.026008419906682182 -0.0010654160560760403; -0.00038326527134042613 0.00042430859777888713 0.00034930741189383597; 8.526053802782655e-5 -0.0008985199777937706 0.000160878965697085; -0.0003967771857136998 0.0010341920913412306 -0.0002243904620731941; -0.001455496554504259 -3.155267804676458e-5 0.00028821667601580344; -0.0002685807673767674 0.000826989980715048 -0.0008420052914367241; -0.0007719825562061786 -0.0008609199968383217 -5.4081725930572875e-5; -0.00011547325119660988 0.00024382875164120964 -0.0003906884145274092; 0.0010448953162641168 -0.0012700408455061536 0.001398368665761554; -0.0009243989271800159 -0.0004827763788561335 -0.00016362116690873035] %
|
||||
|
||||
Mass Used: 896.7374359341643 kg
|
||||
Launch C3: 23.313589250046537 km²/s²
|
||||
||V∞_in||: 4.1947465879304335 km/s
|
||||
29
archive/EMS_0.956419624778337
Normal file
@@ -0,0 +1,29 @@
|
||||
archive/EMS_0.956419624778337---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-09-17T04:51:36.159
|
||||
Launch V∞: [-1.135592828872187, 4.562737698529162, 1.3727576611586305] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-3.557470090326179, 6.118653602166694, -0.5798401682157046] km/s
|
||||
V∞_out: [-5.645943535485121, 4.274383608710339, -0.5316919206121211] km/s
|
||||
time of flight: 1.3085999999776801e8 seconds
|
||||
arrival date: 2028-11-09T18:51:35.159
|
||||
thrust profile: [-0.09484105234506424 0.13109265638731943 0.010936530688181876; -0.1814554654952118 -0.01317670830456729 -0.013056779511401079; -0.03810385790137717 -0.03831609614699233 -0.0090400245120533; -0.011547804227375344 -0.045340160916842225 -0.010789638825569993; 0.010850150398340981 -0.04880193320022692 -0.012185437423926783; 0.013978839278259155 -0.01840779353950528 -0.004665802971635902; 0.015830676636944672 -0.006108261481050007 -0.001974030494045432; 0.02222629553617521 0.007131223648098273 -0.000366596741242515; 0.05551908016805829 0.2775937664715688 0.01624399186055875; -0.11493741715972325 0.07648127820140446 0.005075332093053433; -0.07281410027212154 -0.023271489715626266 -0.00280576336716608; -0.03991641354611127 -0.052482033366050736 -0.012070494591368944; -0.010823677700697571 -0.06926247781385951 -0.014965378527982062; 0.014553072546870926 -0.0531151232441876 -0.012334544418377249; 0.027433879698947325 -0.03222960647822717 -0.008091377392690582; 0.027896088095082885 -0.010765686776681731 -0.0035677146904594865; 0.1474887355876181 0.04194010217566325 0.0075472784087007245; 0.08740136907489779 0.2476740961050621 0.025348796622511757; -0.3587107107731137 0.3658303122853691 -0.024033216941170596; -0.30793493577932085 -0.02489759271709177 -0.029516702132738652] %
|
||||
Phase 2:
|
||||
Planet: Saturn
|
||||
V∞_in: [3.7155109082507987, 4.436831582591491, -1.1732520095761172] km/s
|
||||
V∞_out: [-2.9774108815083147, -1.2560337688716137, -4.9297276650048545] km/s
|
||||
time of flight: 2.0467080000004956e8 seconds
|
||||
arrival date: 2035-05-06T15:51:35.159
|
||||
thrust profile: [-0.05767594934959341 -0.04617371221776187 -0.0018460762847027803; -0.00242135160333423 -0.04166237973886581 0.0014630203665685387; 0.29042498349326934 -0.4463318141243284 0.034252710040742367; 0.9999918983032768 -0.6810996795092573 0.08973482264944235; 0.999994193014499 -0.30520092641941937 0.09457239144251212; 0.9999870255556219 0.2194024540716046 0.09015740448455901; 0.9999831603785917 0.9750561249047252 0.0872456396613651; 0.9999985694625713 0.9999931657134729 0.05615632466445174; 0.687392266640871 0.9999956716419007 0.01734725859208972; 0.029368471497984026 0.99992751557616 -0.014405154294501676; -0.20296396601376304 0.9423006803678043 -0.03524904229410645; -0.12775237609043735 0.3694446313295914 -0.02368746549915993; -0.00034842736779606184 0.0005678692895095884 -0.00031598317940006337; -0.0003712455053865169 -1.6935819288267125e-5 -0.00019252189104459086; -0.0005996017322677676 -0.00028098465395757154 2.2184451692068863e-5; 0.0002022591204715913 -0.00018951661125293372 0.000189711737865895; -0.0007251432775536019 0.0002897166773871866 -3.9173461655229126e-5; -0.000850251276017041 -0.0005646508814492377 0.0013737659604325715; 0.00040972949658941917 -0.0005145490913947212 5.515738964126715e-5; -0.00046082039982410966 -0.0003000114452015229 -0.00026022069154713355] %
|
||||
|
||||
Mass Used: 975.8660040548566 kg
|
||||
Launch C3: 23.992609974834842 km²/s²
|
||||
||V∞_in||: 5.9048298942125665 km/s
|
||||
29
archive/EMS_1.4088814420596534
Normal file
@@ -0,0 +1,29 @@
|
||||
archive/EMS_1.4088814420596534---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-10-16T06:12:17.261
|
||||
Launch V∞: [-1.7148923713366755, 3.9298192178302784, 2.8299200745152713] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-3.423654294372138, 2.5650341612477567, -0.5338967704352118] km/s
|
||||
V∞_out: [-4.266996673560502, -0.5839080002997025, 0.19402466913132768] km/s
|
||||
time of flight: 1.3088384355378014e8 seconds
|
||||
arrival date: 2028-12-09T02:49:40.261
|
||||
thrust profile: [-0.16843253076284767 0.015174387284071982 -0.2568833411269522; -0.04051411441266916 -0.1706697462481348 -0.09202063132953058; 0.045219798511790026 -0.3096747505733966 -0.15447868293737022; 0.1891430434005993 -0.38802384440125315 0.254163650929716; 0.2878269718158013 -0.2521241423300037 0.1694504332526969; 0.2669620698102962 -0.07974891300102108 0.22353096596670005; 0.25838781033301184 -0.013302459740443208 0.1575979105416097; 0.18877094120583682 -0.1090841631358866 0.0675029255999918; -0.36014421578836414 -0.39909210387062594 -0.10424720248437652; 0.007505343447408759 -0.37070440668154536 -0.020703856519349483; 0.18623264501774142 -0.18772468781032164 -0.012898204728801035; -0.07776052053136313 -0.2150791981555987 0.17906646004157736; 0.0933903030286568 -0.351389278618167 0.2513185206003883; 0.15582528052167877 -0.27898764592860065 0.25820541552552223; 0.1705037874283403 -0.15120215929987232 0.22048201505740622; 0.2478320676125178 -0.0553823274204888 0.008131367787768651; 0.3160196179605864 0.06497580000323308 -0.08737918006790793; 0.18787792768517483 0.24030042469215662 -0.02336463045670074; -0.4500653157082868 -0.43615701512016586 0.031249984200407536; -0.5597015227203471 0.026975117825268798 0.05914640634236509] %
|
||||
Phase 2:
|
||||
Planet: Saturn
|
||||
V∞_in: [-0.4447430233297146, -0.5103236773782882, 0.17690937986451852] km/s
|
||||
V∞_out: [0.4026479925582012, 0.16697609141693656, 0.5486720695904586] km/s
|
||||
time of flight: 2.2369063570553738e8 seconds
|
||||
arrival date: 2036-01-11T03:06:55.261
|
||||
thrust profile: [-0.20026176608455784 -0.29694390627659506 -0.03656336874049517; 0.19219210775821996 -0.2745039023151382 -0.008910114775166253; 0.5380981511022175 -0.1752113671787406 0.2750415301381581; 0.8091604929924738 0.059336617760770226 0.16452081995331563; 0.8019293953199363 0.3703939998509808 0.12716583651365265; 0.7628458054564177 0.6219877057473859 0.08804354131656808; 0.6790691189945572 0.7151724861702393 0.07257080916983001; 0.605711392602211 0.7556960844929883 0.05668728294284225; 0.5019330343132242 0.7202977352394476 0.05464681963849307; 0.4355136362347505 0.5812218127189013 0.0598464640192131; 0.2792323417761552 0.6365652142420161 0.06200031759875403; -0.0031648597009793127 0.6439660654725341 0.021229855541562564; -0.22740032522428177 0.585273186623273 -0.0005797994707257422; -0.29907327416889895 0.5556200894768929 0.016308953313994647; -0.3305919828650731 0.6000464102363009 0.008217747003379565; -0.2760568905961062 0.534608626086542 -0.02767524280228222; -0.21717555650995973 0.3271478959702166 -0.000487395179347153; -0.15788889898326117 0.24115731722004857 -0.0013939275969228635; -0.08909459626676448 0.1483902552290073 -0.0013811701172317676; -0.028408442047604864 0.04951927705463767 -0.0006587817095277265] %
|
||||
|
||||
Mass Used: 1489.7371174798539 kg
|
||||
Launch C3: 26.39278255824143 km²/s²
|
||||
||V∞_in||: 0.699659589498638 km/s
|
||||
29
archive/EMS_1.7849375588806782
Normal file
@@ -0,0 +1,29 @@
|
||||
archive/EMS_1.7849375588806782---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-12-27T01:12:40.730
|
||||
Launch V∞: [1.8466699553948345, 1.3678562790010131, -0.0153057964937058] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-3.1633872892711388, 1.766847714739104, 1.5906318484460866] km/s
|
||||
V∞_out: [-2.6570752417451518, -1.5623087854586397, 2.48153623885944] km/s
|
||||
time of flight: 1.3537387772095194e8 seconds
|
||||
arrival date: 2029-04-11T21:03:57.730
|
||||
thrust profile: [0.9929900810043344 0.9999987852496462 -0.10337727636552446; -0.9999989527606722 0.9999992090099894 -0.3047289804175132; -0.9638713659439484 0.0450322438551014 -0.4055337795064804; -0.22495106561402115 0.7848677069324818 0.3831319023782979; -0.7738893421351393 0.9999990172621287 0.39494769205095726; -0.990946731002965 0.8417897053927665 -0.3815221486365675; -0.9734982361035388 0.7893313668448306 -0.2704704369660258; -0.38723803350107505 0.9976585911266805 0.3624717872401706; -0.6369591805380839 0.9888790443583878 0.2130500370042681; -0.9999988687936101 0.9999990044599046 -0.3329147869188805; -0.5789162319974664 0.1999123448513483 0.028083803862645515; 0.7985291692991425 0.7881953295377477 0.17388971281195142; 0.988850032987504 0.9999996591217118 -0.5009694317683372; -0.9999994842664317 -0.3956604351616602 0.20708177708047873; -0.4450447334188467 -0.9872965011676511 0.25277979453414506; 0.9999992382496556 -0.2261999230664443 0.0610408161667454; 0.9999995915291495 0.9999997964336237 -0.5276666165499095; -0.9999998232725931 0.9999996435539122 -0.2721356921234991; -0.9999996876222519 -0.99999900073252 0.10007758955670606; -0.4315629068159034 -0.9999994920612009 0.07571074821215397] %
|
||||
Phase 2:
|
||||
Planet: Saturn
|
||||
V∞_in: [1.327202961748595, -0.2335174765716992, 0.19517799010581816] km/s
|
||||
V∞_out: [-0.10390899330694657, 0.5823202662968701, -1.2235226316464973] km/s
|
||||
time of flight: 1.315170240574828e8 seconds
|
||||
arrival date: 2033-06-12T01:34:21.730
|
||||
thrust profile: [0.9999991434090886 -0.9999989109820826 -0.18840484920575698; 0.999999642574456 -0.7892776436332918 -0.12931408694138657; 0.9999997178412163 0.5267393788441906 -0.06956780561709845; 0.9999997101961674 0.9999994336962261 -0.018610639490947056; 0.9999995326675502 0.9999996674548184 0.04055505772364419; 0.9999985272401802 0.9999997166093685 0.0964843343858098; 0.5108611241098074 0.9999996665528476 0.11541241396889583; 0.11915209802429379 0.9999995788468198 0.1254892030062545; -0.06577608027600101 0.9999995097151354 0.1358163701800956; -0.15786944384121993 0.9999996754541017 0.1375960485939181; -0.19165177643017128 0.9999893885682953 0.12875243461837188; -0.1283595672922781 0.6138567630147376 0.07671724293817712; -0.012317449010467607 0.047087977571726294 0.006452581509892722; -6.34335149466746e-5 0.00091471809306928 8.53716230858717e-5; -0.0002753957972021203 0.0008379366569403406 0.000253847549893273; -0.00012249698733454806 0.000620864691591944 0.0001747719954028129; -0.0007703906582188425 0.00036864647470518063 -0.00026313495806057455; -0.0003679676279671012 0.000462432306598997 -0.0005969365300740931; 0.00010307940670236174 6.503004811360405e-5 0.00016002455788454703; 5.626567684290205e-5 0.00028538089451470705 0.0003865580217838497] %
|
||||
|
||||
Mass Used: 2051.6186645766516 kg
|
||||
Launch C3: 5.281454991566764 km²/s²
|
||||
||V∞_in||: 1.3616506752322357 km/s
|
||||
29
archive/EMS_1.7964973464843803
Normal file
@@ -0,0 +1,29 @@
|
||||
archive/EMS_1.7964973464843803---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-12-28T06:03:36.902
|
||||
Launch V∞: [1.9113115422257663, 1.0939752985973668, -0.2878460457456588] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-2.396005235896576, 1.5910968460984156, 2.4553745598827215] km/s
|
||||
V∞_out: [-0.738879248789918, -1.3198053438616348, 3.466044691382917] km/s
|
||||
time of flight: 1.3682159997877434e8 seconds
|
||||
arrival date: 2029-04-29T20:03:35.902
|
||||
thrust profile: [0.935248482226924 0.9999431292980571 -0.1290404928548267; -0.9999476163597248 0.9999515515170286 -0.24823663597926307; -0.8795731397232727 0.11883370193334312 -0.6198238490789577; -0.47255877270571917 0.8460911087046892 0.5425122446091334; -0.8842186442310318 0.9999442668703385 0.632114794955067; -0.9467809827443692 0.7397804470130911 -0.5827972578364147; -0.9202889335527289 0.8035048754026284 -0.5573817193425457; -0.7074755326919293 0.9999898297887988 0.5385761857415082; -0.778563476191167 0.9440695192200221 0.5088248662337462; -0.999935848670154 0.9999298047351639 -0.5166619290742501; -0.7958311273920875 0.4445916834284018 -0.20253835385960575; 0.799628199463289 0.787390476804687 0.10921619103766879; 0.6775585821251879 0.9999859279862128 -0.056976618126330265; -0.9999708212123471 -0.6329649627446755 0.30597984975011394; -0.3379623142939624 -0.9999302294951131 0.5845511928965047; 0.9999796032643747 -0.12435864928204078 0.05360464346939001; 0.9999735389912225 0.9999936940242244 -0.6858853667949919; -0.9999932115686956 0.9999647789195363 -0.4065818129789695; -0.9999828349783968 -0.9999811809194908 0.2562488369803276; 0.8477193677430503 -0.9999888051388031 0.44654176461357903] %
|
||||
Phase 2:
|
||||
Planet: Saturn
|
||||
V∞_in: [1.687679365659058, -0.3106760396582122, 0.25789343385832764] km/s
|
||||
V∞_out: [-0.13000691471236564, 0.7123751472156044, -1.4816590595134704] km/s
|
||||
time of flight: 1.3038840000839666e8 seconds
|
||||
arrival date: 2033-06-16T23:03:35.902
|
||||
thrust profile: [0.9999943154178064 -0.9999793447580555 0.06826775331348747; 0.9999973057987236 -0.7577830174110806 0.09936609510988814; 0.9999978386167154 0.999996910634015 0.12385129639736782; 0.9999970143501956 0.9999984909994136 0.18181347514052054; 0.9999901589869835 0.9999988995839434 0.2578219962691517; 0.676991268524474 0.9999990090764392 0.2880018307347756; 0.20873881951717477 0.9999990450745354 0.2788781951149253; -0.003991942078742135 0.9999990863624453 0.27800285072408; -0.10377137001550704 0.99999919042469 0.26254279367539807; -0.11890106720112337 0.7958208463902771 0.19525684108652674; -0.05544439551611033 0.27388175650220187 0.07106727942943497; -0.036288195450646675 0.14031424139484425 0.03530510666426885; -0.004277653916611693 0.016826893422196152 0.004178638953119427; 9.200391005419325e-5 0.004147286559672669 -0.00015203464796320339; -0.0001527325932206235 0.0003004840617325797 0.00013127411825929072; -0.000154649294574425 0.0010525030105100078 0.0008862518960764552; -0.0009285177821710427 -0.0009909987221447562 0.002296370239222059; 0.0005316057188195457 0.0015595065628119108 0.00010356134502627535; 0.0034358308362445874 -0.0028793310522562256 -6.702429154429191e-5; -0.00030910308067229515 -0.0011037999999218894 -7.645215422836016e-5] %
|
||||
|
||||
Mass Used: 2067.1392010817217 kg
|
||||
Launch C3: 4.932749111438047 km²/s²
|
||||
||V∞_in||: 1.7353069659620202 km/s
|
||||
29
archive/EMS_1.8179951828877143
Normal file
@@ -0,0 +1,29 @@
|
||||
archive/EMS_1.8179951828877143---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-12-26T20:04:12.197
|
||||
Launch V∞: [2.2631654921869386, 1.185081360708154, 0.009257038518396843] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-1.819421900582889, 2.4878162265474044, 1.9652452646560326] km/s
|
||||
V∞_out: [-1.3203444171650183, -0.6998249118520182, 3.335963173120055] km/s
|
||||
time of flight: 1.332502281347756e8 seconds
|
||||
arrival date: 2029-03-18T02:01:20.197
|
||||
thrust profile: [0.9998287069413306 0.9999191371392129 0.1213662202450064; -0.9999116954167637 0.9999384805827953 -0.12816381654311323; -0.8828170417862063 0.8028517826222941 -0.49870520497687526; 0.4565104064071078 0.9273836393237869 0.5018109850322613; -0.6327164570700743 0.999925849841719 0.4784105400321262; -0.830428721827531 0.9619162741068041 -0.4768142744373306; -0.8673070786916957 0.8947170888203538 -0.20042275389292005; 0.006746002981440682 0.9998684851484286 0.44190370405202867; -0.43972848998205877 0.9935765596102941 0.1925917898116161; -0.9998921566708584 0.9999191466596513 -0.28295229283611234; -0.5708873223359694 0.3773361758460382 0.3615474185713707; 0.885961186451299 0.9060683313648012 0.2199266449664907; 0.9998597552900677 0.9999744957399328 -0.6986700034250672; -0.9999501734393813 -0.053191236063163554 0.2422651192105141; -0.2946407843080661 -0.9108509783200093 0.30366986723671646; 0.9999502617365811 -0.6719510540879361 0.08569312009428964; 0.999977035033471 0.9999843531322284 -0.8250795371244247; -0.9999843642335481 0.9999752522544111 -0.38417007411620746; -0.9999749850418986 -0.9911828413853273 0.03074032591695355; -0.7555359458601892 -0.9999499953971228 0.1307993165243738] %
|
||||
Phase 2:
|
||||
Planet: Saturn
|
||||
V∞_in: [0.9582177076847339, -0.19699918957632162, 0.15581630117660553] km/s
|
||||
V∞_out: [-0.06497216787939741, 0.36319158740168506, -0.9132347096518814] km/s
|
||||
time of flight: 1.2866032712000416e8 seconds
|
||||
arrival date: 2033-04-15T05:00:07.197
|
||||
thrust profile: [0.9999179790353537 -0.9999061112069662 -0.3847027839240411; 0.9999670827320215 -0.9993196899255067 -0.3520428584517027; 0.9999749413896841 0.10728670306699271 -0.20347892697858028; 0.9999770064758384 0.9999429473541616 -0.15892509767413687; 0.9999642130850989 0.9999708004076064 -0.027062892163153125; 0.9999246588230427 0.9999756917747938 0.09553319711816699; 0.575862503562761 0.9999718804815532 0.16723368288218737; 0.1348698059357536 0.9999631099154952 0.18699745173223745; -0.04347818851670972 0.9999540138326606 0.2054654512161514; -0.12936889157582143 0.999966768321729 0.21144524989026273; -0.1589938838387372 0.9999936224369557 0.1997164588314596; -0.12853648815272445 0.6832485852279477 0.14447679147858372; -0.010355042246881451 0.051188278828012496 0.010667915325539963; -0.0014752719235167427 0.00547355770049997 0.0010936545500989869; -0.0031143585237226163 0.0019098863155813648 0.0007045674243290908; -0.0018146510605806672 -0.0020603912304730005 -0.001272418113780502; -0.0015580679285132912 0.0013209738024154483 0.0008370880567315606; -0.005476076545704018 -0.004478067280660263 0.005715586687551187; -0.0006343098431029113 -0.0020565792501144866 -0.003103123685946313; 0.00014069293580912002 -0.0036504980181857414 -0.010638484561936872] %
|
||||
|
||||
Mass Used: 2082.9235875481663 kg
|
||||
Launch C3: 6.526421569285769 km²/s²
|
||||
||V∞_in||: 0.9905900139445544 km/s
|
||||
22
archive/EM_3-29/EM_2022-03-29T21:26:22.750/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T21:26:22.750/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-04-22T09:55:35.770
|
||||
Launch V∞: [7.3434961975052575, 2.1070520149056207, -1.014351173307538] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-4.0891408313442243e-10, -1.3519558171080589e-9, -2.9347938509608335e-9] km/s
|
||||
V∞_out: [-1.009960237699357e-8, -1.009960237699357e-8, 7.767450588932219e-10] km/s
|
||||
time of flight: 8.599031774086058e7 seconds
|
||||
arrival date: 2027-01-12T16:07:32.770
|
||||
thrust profile: [0.10180817450485931 0.010765994728988202 -0.007544294859875064; 0.16235850598372423 0.10642344368168269 -0.0003675622257710981; 0.1012089195326011 0.215498048785662 0.009263152266136488; -0.005263860097698059 0.23018146612119708 0.014653161556634695; -0.07216616837405394 0.1886632498893549 0.01482047592832661; -0.09398125027080778 0.12777759796739516 0.011338047777898999; -0.08181401680555038 0.06911303246065172 0.005833525852290107; -0.046580710304300145 0.02548722787737307 -0.000870777813142698; 0.0008108654501895264 -0.002069527547353827 -0.010201717802848145; 0.034561814232433444 -0.014025534635558886 -0.008973491598575703; 0.08747966934536043 -0.003895559625340753 -0.007112515261902957; 0.15550075175184433 0.018424169433452726 -0.005669922341139337; 0.20248982822207362 0.14526574995002947 0.0013158139705482853; 0.1119856201004996 0.257928321038749 0.011672620538172137; -0.013956968702964088 0.25905748898149866 0.016710191647944732; -0.08713823665180384 0.20616330494298554 0.01620667875500915; -0.10696574449396443 0.13889689572070454 0.012648766692620108; -0.09152920511480982 0.07897071043001104 0.008095327395193714; -0.05734765938030889 0.03602736492249166 0.004000200225081728; -0.018669314030212245 0.009667853783132363 0.0010959107001852323] %
|
||||
|
||||
Mass Used: 102.10077631610102 kg
|
||||
Launch C3: 59.395512899082384 km²/s²
|
||||
||V∞_in||: 3.256994044580908e-9 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T21:26:22.750/plot.html
Normal file
22
archive/EM_3-29/EM_2022-03-29T21:29:32.797/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T21:29:32.797/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-23T04:29:27.925
|
||||
Launch V∞: [3.3948803973755504, -2.4577679470301823, -0.9108626328289409] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-9.533352172826976e-10, -9.477177141496064e-10, -1.6329568148050564e-9] km/s
|
||||
V∞_out: [-4.993330429282141e-10, -4.2879092581858787e-10, -2.3614363530159443e-10] km/s
|
||||
time of flight: 1.7632014328727353e8 seconds
|
||||
arrival date: 2029-12-23T22:18:30.925
|
||||
thrust profile: [0.03456534559612611 0.003378817240313221 -0.005847373254693159; 0.00947257573188261 0.018201878458255185 0.007200303057438418; -0.004323909654354275 0.01249526284025378 0.0148773281730713; -0.01158118824683763 0.0035968703342061353 0.015269664673521784; -0.014059676447250516 -0.008412132946442719 0.008604541649422459; -0.005532635332091579 -0.0222637656012968 -0.0034383221186402285; 0.021986188048601012 -0.02106400050803527 -0.008639248086466517; 0.017681089333976076 0.009993783002874504 0.003021725433334957; 0.0019228014351383971 0.011070063719295309 0.013061259255238647; -0.006139542196052064 0.004677076522798168 0.015910259868307026; -0.008545089251963688 -0.004479324701411431 0.011537788412234507; -0.0016877898391656034 -0.011682836725100527 0.0011701415189322448; -0.0003566125916268421 -0.01179761558953741 -0.008519419526240076; 0.014749885872094748 -0.0029190252507672954 -0.0019352156873499635; 0.00424054036493813 0.005291076160963761 0.010144665911928733; -0.002562774524319081 0.0018319412240714573 0.0157273231044577; -0.004535441668234806 -0.00482430642022855 0.014079386327258895; 0.0021824954095405903 -0.011442073033427643 0.0056673371449387985; 0.00910349572655102 -0.00026356393299342343 -0.0060482701344148565; 0.0010618127127533534 0.0009141380026824337 -0.006122360667166782] %
|
||||
|
||||
Mass Used: 24.97711287513448 kg
|
||||
Launch C3: 18.395506929817802 km²/s²
|
||||
||V∞_in||: 2.1150803439214027e-9 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T21:29:32.797/plot.html
Normal file
22
archive/EM_3-29/EM_2022-03-29T21:30:57.022/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T21:30:57.022/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-10-12T01:36:00.330
|
||||
Launch V∞: [-0.34441487078455013, 3.9103321083115397, 2.032019563693426] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-1.323280834421365e-9, -1.305249079827022e-9, -1.756498248174488e-9] km/s
|
||||
V∞_out: [-2.072434338771005e-9, 3.1188692292717017e-10, -9.96060247089551e-10] km/s
|
||||
time of flight: 1.9187428749374934e7 seconds
|
||||
arrival date: 2025-05-22T03:26:28.330
|
||||
thrust profile: [-0.0006647023892816537 0.004035322252316528 0.002450694309122812; -0.0010810936123367345 0.0033648421104130093 0.003041727879478422; -0.0013507121101609906 0.0028319436906776322 0.003294754033895274; -0.0013817337282281677 0.002283246633035519 0.003911472841560675; -0.0014099790469406482 0.0016622747910402052 0.004243346099566735; -0.0012603732201070137 0.0013617718291820912 0.004609732990326976; -0.001109687893062513 0.0010166792245012248 0.005257291391887101; -0.0009765487656423202 0.0007701050283466614 0.0045962916304727545; -0.0008511110507625 0.0005562454707099463 0.004264167411226241; -0.0007373982279473773 0.00044288704744547956 0.0042335052666390175; -0.0005724074417038922 0.0002590516109966243 0.003593127587839534; -0.00048097983471947337 0.00027784548514532824 0.0036573739539471012; -0.0004010082145124844 0.00023837273061184575 0.00295844216959782; -0.00030319886238157107 0.000188351968848797 0.0026590665546669954; -0.00013453010791864773 0.00015049323913512056 0.002533970064140107; -0.00017918516868998714 0.00011876509991415298 0.0020961759015662375; -0.0001309746244392474 9.400293297511669e-5 0.0016359370993405285; -8.735433670043718e-5 6.50059985134959e-5 0.0011999019334906667; -5.205594667799379e-5 3.959950287622984e-5 0.0007255745258836434; -1.69083877031164e-5 1.3250954732018612e-5 0.0002522304876801491] %
|
||||
|
||||
Mass Used: 0.5263628244356369 kg
|
||||
Launch C3: 19.53842230774253 km²/s²
|
||||
||V∞_in||: 2.5573489052095017e-9 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T21:30:57.022/plot.html
Normal file
22
archive/EM_3-29/EM_2022-03-29T21:33:01.420/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T21:33:01.420/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2023-03-11T16:02:09.080
|
||||
Launch V∞: [7.290339628882368, -1.8288440801615886, -6.632030600228825] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-0.003664456556782759, -0.0036510052522354575, -0.0017682821659383713] km/s
|
||||
V∞_out: [-0.1893444115511239, 0.18934441155112372, -0.07646642757306271] km/s
|
||||
time of flight: 9.309960005487782e7 seconds
|
||||
arrival date: 2026-02-21T05:02:09.080
|
||||
thrust profile: [-0.1746457094907778 -0.05324520729862655 0.49134886061939687; -0.627027503294072 -0.40066969942751784 0.5818755748236487; -0.4247709197544459 -0.70455535681447 -0.18137441849457178; 0.39985450427415964 -0.6472758630327436 -0.6430237844213548; 0.4656645028614102 -0.26488366431804417 -0.7314105489598725; 0.1191067639913546 0.2223158565414293 -0.7468478853961351; -0.3933541564722199 0.058176480588614785 -0.7289724142316767; -0.5058338906252844 -0.4156231661282735 -0.5643546902998223; -0.5318185912755031 -0.6386622831457283 0.08080900296257724; 0.27321630774062744 -0.7220941798748955 -0.042143171437234374; 0.5425105272566577 -0.48807460643793443 -0.3531814327468772; 0.3522022888052473 0.06262879123129814 -0.6401364976996247; -0.1561236716305922 0.5164836976614604 -0.7196848157274702; -0.6067507933991897 0.5079757344850814 -0.7392991893046754; -0.7130116758304386 0.10035106755129632 -0.6845824948634448; -0.6878836289874771 -0.5954631055945753 -0.6809457412241607; -0.3269757395259158 -0.7281706083760071 -0.725121591528696; 0.5029082823724691 -0.7211592525685994 -0.6308100968795103; 0.5368458661526178 -0.4216537659711369 -0.14188422812553816; 0.16194407043490938 -0.2071575272584137 0.018329982767622783] %
|
||||
|
||||
Mass Used: 633.2884274220719 kg
|
||||
Launch C3: 100.4775524563663 km²/s²
|
||||
||V∞_in||: 0.005466708610011581 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T21:33:01.420/plot.html
Normal file
22
archive/EM_3-29/EM_2022-03-29T21:44:52.679/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T21:44:52.679/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-01-22T12:08:19.865
|
||||
Launch V∞: [9.999999510580688, -9.997198712980596, 0.2367016801977378] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-0.000819918545143649, -0.0012451509155042646, -0.001250921976389137] km/s
|
||||
V∞_out: [0.0019338785602035886, -0.0019338785602035886, -0.0006601321083539838] km/s
|
||||
time of flight: 1.7233962915051136e7 seconds
|
||||
arrival date: 2024-08-08T23:21:01.865
|
||||
thrust profile: [-2.3909756762714905e-7 3.7137254328500285e-7 6.84557970113123e-10; -6.490849187612506e-7 -1.6923622503113822e-7 7.597297006308147e-8; -1.3462011970258392e-7 5.4785730096847575e-8 3.065595287593101e-8; 0.15976947743667638 -0.2920794439050224 0.002394761620150665; 0.5616910709675398 -0.7901992734350411 0.010726222487855458; 1.0 -1.0 -0.0032456678933753843; 1.0 -0.6953371235997132 -0.00807847832727659; 1.0 -0.23068593990468247 -0.009476805297354552; 1.0 0.06616898317798338 -0.009396139547492788; 0.8458292750604345 0.20752997653151717 -0.009416373557718996; 0.4899942520164369 0.18998472141046954 -0.007666776709170746; 0.03957676169176063 0.0210088124260986 -0.0012531497610165998; -5.452577185178014e-7 -3.4799035186607614e-7 -1.0511021967736704e-7; -1.3251613739747719e-8 3.0514099445579054e-7 4.002333800730656e-8; 1.6516923938790852e-8 -9.029916507496571e-8 8.144270988392475e-8; 6.025616118742147e-7 -5.477234118696148e-7 1.5445834673209101e-6; 1.2522336398625811e-7 -1.1634639614565971e-6 3.2890058545783734e-7; -1.8707392087284995e-7 1.037143716480063e-7 2.3487962795435016e-7; -1.0032847526436222e-6 -9.961208338104671e-7 1.0945507651240803e-6; 1.5694593639258316e-6 -4.2952948369892885e-7 -3.8494467904625947e-7] %
|
||||
|
||||
Mass Used: 50.813640071233294 kg
|
||||
Launch C3: 200.0000000038433 km²/s²
|
||||
||V∞_in||: 0.0019461431124315834 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T21:44:52.679/plot.html
Normal file
22
archive/EM_3-29/EM_2022-03-29T21:46:54.102/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T21:46:54.102/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-11-11T17:47:11.536
|
||||
Launch V∞: [-2.637789291564701, 7.365806125093766, 1.1946168639279173] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-0.044388255339722446, 0.05279424355864281, 0.05040248633053719] km/s
|
||||
V∞_out: [-0.014690038570962082, 6.047928149069252, 0.0402218040709599] km/s
|
||||
time of flight: 9.338400004077721e6 seconds
|
||||
arrival date: 2025-02-27T19:47:11.536
|
||||
thrust profile: [4.550817449124052e-7 7.763476095695704e-6 -8.951834889878114e-5; -1.683989066220231e-5 6.926242475714976e-5 -2.8801022778955843e-6; -3.2857446755970286e-5 0.000111131319945128 5.116462056209784e-6; -1.8729031546388233e-5 5.436146435025702e-5 8.422047807261321e-5; -3.937488649940267e-5 0.00012696227955243206 -8.532134224201484e-5; -1.0059863865866885e-5 2.4658136117281536e-5 -1.684375841787375e-5; 4.906742377377519e-5 -0.00012829316592757872 0.00011336735200215563; 2.089328062485444e-5 -4.091796173674061e-5 4.91054297730873e-5; 3.6303103564460345e-6 -8.192507389662463e-6 0.00018463100624064758; 9.183017844786658e-5 -0.000102961513685098 -2.2996942742832565e-5; -3.570454906404795e-6 7.063475253086773e-7 4.489457323974194e-5; 4.501722144285221e-6 -1.4070298502410475e-5 0.00012324041685903012; -1.7478055220611036e-6 2.873220524346435e-5 -0.0002474631986841141; -2.3178341505326345e-7 6.162662443854e-5 -0.00036775871159988626; 5.113474717292926e-6 0.00011622972164925676 -6.003368153265286e-5; 3.496467618704115e-6 2.008310733865503e-6 -3.261195379666672e-5; 7.630237920042993e-6 1.1841800841292385e-5 -5.3531357169394734e-5; -2.435474741947106e-5 -3.088566762921298e-5 8.568030368819686e-5; 2.05686426229734e-5 2.1197875883934535e-5 -3.1608864977248355e-5; 2.6389349541919505e-5 2.927984365861755e-5 9.508078462673436e-6] %
|
||||
|
||||
Mass Used: 0.00865322013714831 kg
|
||||
Launch C3: 62.64014167074321 km²/s²
|
||||
||V∞_in||: 0.08542809838298922 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T21:46:54.102/plot.html
Normal file
22
archive/EM_3-29/EM_2022-03-29T21:49:25.266/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T21:49:25.266/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-01-22T05:21:14.524
|
||||
Launch V∞: [9.999636707630842, -9.999711031426283, 0.11421476860707167] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-0.0005668718069816592, -0.00031760816291536434, -0.000716139266867567] km/s
|
||||
V∞_out: [4.602661802552677e-5, -0.0002767853386654524, -0.0009253970079822862] km/s
|
||||
time of flight: 1.8504181207751602e7 seconds
|
||||
arrival date: 2024-08-23T09:24:15.524
|
||||
thrust profile: [7.857635262435799e-9 -1.3269126706634187e-9 -2.6678444933858832e-8; -1.0637360281620793e-8 -2.286988515481341e-8 -8.80823866575928e-9; 6.0952069265027294e-9 -2.83469800266583e-8 -1.490175153809855e-8; 0.0226345802482894 -0.0425037954420528 0.00013571022638739796; 0.3150512263564853 -0.3307029057599246 6.642556817831003e-5; 0.7436637294478844 -0.4801347645399363 -0.0017893772307274593; 0.8606779112586623 -0.24141142990090325 -0.0037932113948367296; 0.8040060250257044 0.016198399857395514 -0.004471603451557433; 0.6399746211803117 0.16197029278741412 -0.0044542497883041455; 0.3727551022451268 0.16851762370795223 -0.0032249765404340643; 2.1347115495508663e-7 1.2358201767787164e-7 -9.95030121314948e-9; -3.2446413607840104e-9 -4.6723722793820385e-9 -1.7929106379494995e-8; 5.182519495541647e-9 3.4030707061963687e-9 1.3576577417457207e-9; 7.77921539082814e-9 8.910703811213887e-9 -2.795024270457183e-9; -6.239445899255738e-9 -5.3493145318475e-9 -1.0884699785346293e-8; -4.6105410818633964e-8 1.0422534641378147e-8 -3.1989587412074714e-8; -5.043811123979896e-10 -1.5735249773983739e-9 -2.485221976312311e-9; -2.9761057764991258e-9 5.873921191568738e-9 -9.103537944568155e-9; 5.14444314540825e-9 2.6244355859150998e-8 -4.4579652417185817e-8; 1.7864549904100225e-9 -5.672782066774026e-9 -8.346804698233242e-9] %
|
||||
|
||||
Mass Used: 30.632832509893888 kg
|
||||
Launch C3: 200.00000000999466 km²/s²
|
||||
||V∞_in||: 0.0009669922648350091 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T21:49:25.266/plot.html
Normal file
22
archive/EM_3-29/EM_2022-03-29T21:49:36.826/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T21:49:36.826/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-15T10:56:11.057
|
||||
Launch V∞: [6.441902798268679, 10.0, -0.8580312930039031] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [1.1346777920325148e-7, -1.6337616718675993e-7, 1.0330204534180961e-7] km/s
|
||||
V∞_out: [-1.0317733873112507e-7, 2.3171717331048837e-6, -1.93986714938645e-8] km/s
|
||||
time of flight: 3.4632733537038654e7 seconds
|
||||
arrival date: 2025-06-20T07:08:24.057
|
||||
thrust profile: [-1.6714820918342543e-8 -1.528466539382287e-8 -2.1954025843586096e-8; -3.349740604524035e-8 1.7981805687302658e-7 -7.022649953046174e-9; 1.8833170950448843e-8 8.548553623260635e-8 -4.108646810746605e-9; 0.015250670354150446 0.8084120898285189 0.022810952919723303; -0.4471453131878308 0.9999999903024106 0.04006905981158459; -0.940578331193299 0.999999993466643 0.0463151648707486; -0.9999999926560775 0.8872505298154237 0.043065678915645736; -0.9999999865564515 0.5078822642356666 0.04002774379588722; -0.962703858267274 0.25286276492713566 0.031382869157176016; -0.7756546264427393 0.08215017131953659 0.018158411737504068; -0.5391748150704597 -0.00685832535402532 0.010123577086814562; -0.28342464446445065 -0.029810747488727737 0.006770186169348639; -1.123224049355356e-8 -1.3141710495594749e-8 -1.7542653699628666e-8; -1.7528478886241226e-7 5.358445351823748e-9 -6.699375227774894e-8; -1.3135303081170559e-7 -1.2185271425829965e-7 -3.228097411495359e-10; 1.1373627184214759e-8 3.001014188079098e-8 -2.51036875849398e-8; 3.6364423359808617e-12 -1.1453961586869118e-7 3.15681037477465e-8; -2.2731576792249495e-8 -7.140875056921905e-9 -4.234566273922648e-9; -8.105071719032486e-8 -1.2311649733884225e-7 5.2532523546505e-9; 3.7930997639741155e-9 2.2050999807275034e-9 -1.6994076482759186e-8] %
|
||||
|
||||
Mass Used: 114.99761554896395 kg
|
||||
Launch C3: 142.2343293621158 km²/s²
|
||||
||V∞_in||: 2.2413839807974726e-7 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T21:49:36.826/plot.html
Normal file
22
archive/EM_3-29/EM_2022-03-29T21:49:40.929/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T21:49:40.929/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-07-14T20:37:13.182
|
||||
Launch V∞: [-1.1330208167169828, 8.150093305408548, -0.42599383797196094] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [0.06785386315763219, 0.08160526029107552, 0.10069188976102801] km/s
|
||||
V∞_out: [-0.06019693846168101, 0.1154681190090172, 0.0013638641321443625] km/s
|
||||
time of flight: 3.3249599821579646e7 seconds
|
||||
arrival date: 2025-08-03T16:37:12.182
|
||||
thrust profile: [-3.2390308133578046e-6 -8.205592041810102e-7 -1.7023725789005115e-6; -4.254648394564359e-6 -1.0681074705420982e-5 7.03349069144519e-6; -3.6503599525277004e-5 1.211591857880556e-5 4.998821545861222e-5; 5.8142912412027884e-6 1.815497639490963e-5 4.755326622471413e-6; 2.1131283188873194e-5 -2.658343343429692e-5 -1.3407885571598285e-5; -4.61924068664863e-6 1.233572876146752e-5 5.931451952243551e-6; -1.0093023108865622e-6 -6.117529097643235e-6 -1.4487022912767236e-5; 3.255742051919883e-5 2.414843899996706e-6 -1.6802467693339598e-6; -3.755099218079546e-7 -7.03737787215465e-6 3.678113986874362e-7; 5.000413950443672e-6 -6.750857750004181e-6 -3.69195982831641e-6; -4.843006060165484e-6 -3.981873834068709e-6 -8.39506817046051e-6; 1.9138464837736528e-5 -1.1967250409666853e-5 -5.84236755572486e-5; 1.9835599971523244e-5 -7.450220189850961e-6 -3.2160727631147586e-6; 5.835552646320366e-6 -1.8859087544603728e-5 -9.49615711370029e-6; -2.455723410768635e-5 6.327003737755019e-6 -1.2577725131349784e-5; -5.262439904045446e-6 6.952002003737397e-6 -6.5460093506210335e-6; 1.29796109554274e-5 1.82478532330856e-5 -1.5041887536003234e-5; -9.627406878153045e-6 -5.772049645592626e-6 -1.4348219890042947e-7; -9.78894081123465e-6 3.3042544258109555e-5 1.5879718352840226e-5; -5.425039696689593e-7 -9.226404572856256e-6 9.61839430152342e-6] %
|
||||
|
||||
Mass Used: 0.006099916057792143 kg
|
||||
Launch C3: 67.88922780796933 km²/s²
|
||||
||V∞_in||: 0.14629566608835642 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T21:49:40.929/plot.html
Normal file
22
archive/EM_3-29/EM_2022-03-29T21:51:28.498/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T21:51:28.498/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-09-29T06:36:19.325
|
||||
Launch V∞: [-2.587284640962116, 4.633341500696843, 1.7167586419161047] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-0.19753746109783032, 0.25819074680887755, 0.26503536879040035] km/s
|
||||
V∞_out: [-0.315758776271297, -0.8539914904213332, 0.8539914904213984] km/s
|
||||
time of flight: 1.5073200002586758e7 seconds
|
||||
arrival date: 2025-03-22T17:36:19.325
|
||||
thrust profile: [-7.450599065824146e-9 -7.450584303466995e-9 -7.450590836663176e-9; -7.450587576906885e-9 -7.450589090923008e-9 -7.450558189003243e-9; -7.450565194803655e-9 -7.450611457729077e-9 -7.45054991590754e-9; -7.450600513649451e-9 -7.450590716301945e-9 -7.450607153363093e-9; -7.450528020006835e-9 -7.450561990165038e-9 -7.450526461597745e-9; -7.450555250204573e-9 -7.450607011409635e-9 -7.450602548674602e-9; -7.450564628439462e-9 -7.450600629100434e-9 -7.450588565463268e-9; -7.450619650423247e-9 -7.450608473513382e-9 -7.4505692480758075e-9; -7.45064263594121e-9 -7.450567115419777e-9 -7.450562075663264e-9; -7.450580126235538e-9 -7.450587476295809e-9 -7.450568854754488e-9; -7.4505366612824064e-9 -7.450589324902333e-9 -7.450584239263405e-9; -7.450489666957581e-9 -7.450537925286817e-9 -7.450498460628677e-9; -7.450552685353022e-9 -7.450579447503591e-9 -7.450633939663657e-9; -7.450616725224094e-9 -7.45060730810255e-9 -7.450610502067296e-9; -7.450581072447471e-9 -7.4505612150820725e-9 -7.450606871304834e-9; -7.450563685058705e-9 -7.450550577646896e-9 -7.450584512906325e-9; -7.45058338424796e-9 -7.45058208960814e-9 -7.45059162827976e-9; -7.450547249176265e-9 -7.450555252809561e-9 -7.450551428356576e-9; -7.45060469168066e-9 -7.450619817820747e-9 -7.450626574693086e-9; -7.450591348730228e-9 -7.450569077582649e-9 -7.4505992975666e-9] %
|
||||
|
||||
Mass Used: 1.549092758068582e-6 kg
|
||||
Launch C3: 31.109155510031766 km²/s²
|
||||
||V∞_in||: 0.4194368331281437 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T21:51:28.498/plot.html
Normal file
22
archive/EM_3-29/EM_2022-03-29T21:58:30.321/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T21:58:30.321/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-12-10T18:17:03.345
|
||||
Launch V∞: [-0.22142913746497983, 8.613702367564114, 0.395646369589788] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-0.003807700964755288, -0.05635954129158412, -0.008059749565666045] km/s
|
||||
V∞_out: [-0.004673762071972183, 0.023969198600263253, 0.0032827185153388007] km/s
|
||||
time of flight: 2.211840042633046e7 seconds
|
||||
arrival date: 2025-08-23T18:17:03.345
|
||||
thrust profile: [-2.7099961488351806e-5 -1.4871074056565297e-5 -2.4409683044127975e-5; 9.646611740529691e-6 -0.0003420396277143331 -1.4868108643254946e-5; 2.133935422770787e-5 -4.4306217453697985e-6 -4.803508959276009e-5; 2.4459845792704493e-5 -3.6995123289765117e-5 -2.9925040076576046e-5; -3.650950167903471e-6 -7.838803352580581e-5 2.4747499455879648e-5; -6.523041671648795e-5 3.5087934323253556e-6 -2.4005599476677803e-5; 2.5824401386028627e-5 -5.305113471826212e-5 4.630647640937965e-5; 3.106981203665597e-5 3.544948660180863e-5 5.523446183421823e-5; 5.22286273436312e-5 0.000123040814806458 -0.00012676926781162037; -7.230267382777404e-5 -0.000260285686999283 0.00028378411056846934; -6.687818964937921e-5 0.00010386642943476749 -1.7433504223833023e-5; 1.628396440937132e-5 9.706470918419143e-6 -2.010464752776144e-5; 1.7691694085809603e-5 1.8769928239818888e-5 8.64374415484856e-5; -1.9940109128613944e-5 -2.4978683584950083e-5 8.154400491960929e-5; 3.746496390446149e-5 -7.996841154215747e-5 8.731190252691787e-5; 8.384626723016047e-5 0.00012055180341030887 -9.12903721447452e-5; 0.00030557244279303915 -1.0874417231438263e-5 0.00027076266521899666; 0.00010797337086871226 2.418131034629288e-6 2.46314050788356e-7; -4.8544246038547224e-5 8.023388406493804e-6 -1.3321622294600293e-6; -2.1337222473883922e-5 0.000161247930621023 -9.715049457277587e-5] %
|
||||
|
||||
Mass Used: 0.024185192960430868 kg
|
||||
Launch C3: 74.4014353896677 km²/s²
|
||||
||V∞_in||: 0.05706010904560232 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T21:58:30.321/plot.html
Normal file
22
archive/EM_3-29/EM_2022-03-29T21:59:56.201/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T21:59:56.201/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-11-02T06:44:24.402
|
||||
Launch V∞: [-0.049611423370383025, 4.3887768099156235, 0.2397844149782377] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-0.28117135821620853, 1.194065776563358, -0.1878338484580809] km/s
|
||||
V∞_out: [-0.6401552299219904, 1.0676650444881157, -0.004843562733730455] km/s
|
||||
time of flight: 2.8675341966952853e7 seconds
|
||||
arrival date: 2025-09-30T04:06:45.402
|
||||
thrust profile: [-6.75010685435156e-9 -7.128389367903114e-9 -6.764569952771536e-9; -7.854492591597582e-9 -7.999190980986096e-9 -7.56171297045386e-9; -7.411321266505082e-9 -7.3114050701082215e-9 -7.55580573230112e-9; -7.651530680516069e-9 -7.666997827122132e-9 -8.49436628413585e-9; -8.211778239957757e-9 -7.712874354717269e-9 -7.531646409796486e-9; -1.3041223632506712e-8 -1.1505347567528765e-8 -1.1327175955299429e-8; -7.4382917597938215e-9 -7.470595276285478e-9 -7.436526503122886e-9; -7.4066384907957325e-9 -7.477391356913722e-9 -7.393627041672364e-9; -8.490728461637439e-9 -7.447948593375514e-9 -8.223435454942976e-9; -7.243567265436005e-9 -6.990848569720015e-9 -7.311069521989123e-9; -7.470925069700345e-9 -7.517096742281904e-9 -7.2858921115831336e-9; -5.251447999281985e-9 -5.273780973491265e-9 -6.675361320542912e-9; -7.558627194101523e-9 -7.492146820031137e-9 -7.45645012297696e-9; -7.2878343544302096e-9 -7.2766617254979426e-9 -7.221830929334092e-9; -1.5590145011707196e-9 -1.974892338935215e-9 -1.3189839304906718e-9; -4.649692239474741e-9 -5.02145900568508e-9 -3.3671118225301505e-9; -7.850732664606476e-9 -7.768068826428585e-9 -7.4479836858425065e-9; -7.24166072771011e-9 -7.280881665927263e-9 -7.234374477741455e-9; -5.484578641350827e-9 -5.45192526011684e-9 -5.410771310297238e-9; -7.621367481763838e-9 -7.564226463702764e-9 -7.592122009986836e-9] %
|
||||
|
||||
Mass Used: 2.8080553420295473e-6 kg
|
||||
Launch C3: 19.321319746248445 km²/s²
|
||||
||V∞_in||: 1.2410205341039189 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T21:59:56.201/plot.html
Normal file
22
archive/EM_3-29/EM_2022-03-29T22:02:40.626/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T22:02:40.626/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-12-05T12:41:35.605
|
||||
Launch V∞: [0.34208345982054794, 9.685722102267114, 1.0135726196799333] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-1.044189695816697, 5.606992695460721, 0.6669749140025341] km/s
|
||||
V∞_out: [-1.663147851968031, 4.139628155579746, 0.7399548282520139] km/s
|
||||
time of flight: 1.1581200001669213e7 seconds
|
||||
arrival date: 2025-04-18T13:41:35.605
|
||||
thrust profile: [-4.6079105664078877e-5 -0.00012331290696458524 3.857290588633784e-5; 1.080629253868903e-5 -7.862558725402423e-5 -1.577782579822753e-5; 0.00012294508889228685 0.0001157766111977547 -7.561217621375722e-5; 7.982229075851814e-5 -3.220285538923316e-5 -4.4317366310939693e-5; -2.379024823156827e-5 -7.848301760916924e-5 1.0173976438826385e-5; -5.0258317369872474e-5 -9.493318759847104e-5 2.0214040124684093e-5; -5.091418646156128e-5 -0.0001217205174737956 1.2898657418352046e-5; 2.8918514216456975e-6 4.8713183689657356e-5 8.218982364067898e-7; -7.013970277251351e-5 0.00016984599894599242 4.472426555147454e-5; 4.101982487628375e-5 -0.00014567448690259096 -4.20309304000344e-5; -4.70029927248979e-5 -8.284004507475568e-5 1.8925597178656232e-5; 8.670365778542101e-5 7.723828389414057e-5 -4.728960557142774e-5; -1.1273042710496325e-5 1.5796318007177794e-6 1.004719027628209e-5; 1.156788959809497e-5 -9.12107530024284e-5 -4.421958910455016e-5; 5.8489607768559684e-5 -3.186318691478282e-5 -7.568690979128904e-5; -4.101390839132036e-5 -6.912092662580811e-5 1.875683893727222e-5; -9.282793252271017e-5 1.8581365311066747e-5 0.0001607242504965489; 2.5608653889505896e-5 2.5749263651290097e-5 -2.663654795135107e-5; 6.471735913709624e-6 -1.582848279061017e-5 -3.144105357929748e-5; -2.0418356210322056e-5 -5.206011476136069e-5 1.0750219832116774e-6] %
|
||||
|
||||
Mass Used: 0.009526397249373986 kg
|
||||
Launch C3: 94.95756319119332 km²/s²
|
||||
||V∞_in||: 5.742260421097979 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T22:02:40.626/plot.html
Normal file
22
archive/EM_3-29/EM_2022-03-29T22:11:59.808/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T22:11:59.808/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-07-12T14:57:14.038
|
||||
Launch V∞: [-2.1356055281697612, 10.0, -9.769298185542464] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-1.4198898735875047, 1.3740951409636546, -1.4192321863480188] km/s
|
||||
V∞_out: [1.4110404995307853, -2.1212048062899553, -0.6728408923695377] km/s
|
||||
time of flight: 1.5440221824979678e7 seconds
|
||||
arrival date: 2025-01-07T07:54:15.038
|
||||
thrust profile: [0.05956977091681903 1.0 -0.10922677780373319; 0.23817833345981507 1.0 0.09826946570814477; 0.40293966085543176 1.0 0.3551237041998419; 0.5317072540959735 1.0 0.7307023601163831; 0.5078043727484851 1.0 0.9982992529843099; 0.33655425425041224 1.0 1.0; 0.1360349738666649 1.0 1.0; -0.026672364591518467 1.0 1.0; -0.19610649486002443 1.0 1.0; -0.29528444695253986 1.0 1.0; -0.35123463549962813 1.0 1.0; -0.3634631832054668 1.0 1.0; -0.34243556937322644 1.0 1.0; -0.2988969593988343 1.0 1.0; -0.23211645533604322 0.8701239790258618 1.0; -0.13699199073043578 0.48199643592034935 0.6802560133378645; -4.9400538315483375e-8 1.4543622135653008e-7 2.2274035599587473e-7; -2.6590282235167093e-8 6.069199505306199e-8 7.406086114073912e-8; 7.262188061710368e-8 -2.6660015831706114e-8 -1.054025466018286e-8; 7.299781920337516e-9 5.276251956583804e-9 -2.5519508317922344e-8] %
|
||||
|
||||
Mass Used: 130.30806476829775 kg
|
||||
Launch C3: 199.99999800999254 km²/s²
|
||||
||V∞_in||: 2.432785380649605 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T22:11:59.808/plot.html
Normal file
22
archive/EM_3-29/EM_2022-03-29T22:26:29.640/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T22:26:29.640/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-10T14:47:37.584
|
||||
Launch V∞: [8.454590640928295, 9.260765024912534, -0.9885318724952183] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-0.006319696103929528, -0.0412349395695302, 0.025407019305862494] km/s
|
||||
V∞_out: [0.022415695471427622, -0.032554221329412304, 0.028687979305271248] km/s
|
||||
time of flight: 1.8230010689416587e7 seconds
|
||||
arrival date: 2024-12-07T14:41:07.584
|
||||
thrust profile: [-0.0002622529733463554 0.00010449975350988813 -0.00012030102951252053; 2.2564340820408038e-5 -3.981832926552484e-5 -7.923191359546866e-6; 5.169422416636556e-5 -5.810036687510864e-5 0.00011428268526115506; -0.00014971921355914664 -0.00014100200005065646 0.00016890254129742059; 0.00015620328410727985 -3.366292385390309e-5 -0.00020340087014733029; -3.210609078978168e-5 -6.498562052193143e-5 5.338807325839352e-5; -8.516237377437068e-5 -0.0001612296252470605 4.209812632127493e-6; 6.305171484191589e-5 -0.001682367723787057 3.8599641512170114e-5; 2.2345674659450702e-5 6.798172919803859e-5 -0.0001184406426706027; -1.6251278244512348e-5 -6.533351590187232e-5 -3.92438433311786e-6; -0.00036512149400096404 -4.6068321314717516e-5 -5.609213629078427e-5; -5.621377289755845e-5 2.1241246976381148e-5 -3.414115489177037e-5; -0.00034119461694600184 -6.972852980194507e-5 2.2003699273903694e-5; 0.00018976563510694219 -9.050300294247073e-6 0.00012300348192681063; 5.426150865573059e-5 -0.00010044444909460297 4.785290273646994e-5; -4.4309429079208605e-5 7.02628779669344e-5 -4.7916743218706474e-5; -8.408538773370183e-5 -4.412949196949812e-5 2.4492265814848663e-5; 0.00011172380033234707 6.642438716286984e-5 9.399896039444412e-6; 8.401331768830077e-6 4.877367093015932e-6 -1.2408399381198787e-6; 9.503407085636648e-5 -0.0002551562074474474 -1.3659784774574114e-5] %
|
||||
|
||||
Mass Used: 0.03575572314321107 kg
|
||||
Launch C3: 158.21906701525444 km²/s²
|
||||
||V∞_in||: 0.0488444001924202 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T22:26:29.640/plot.html
Normal file
22
archive/EM_3-29/EM_2022-03-29T22:29:19.608/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T22:29:19.608/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-10-10T01:24:19.159
|
||||
Launch V∞: [-1.361280774218496, 4.248905515475195, 1.6131303371846983] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-1.3206429765527528, 0.04508054081073763, -0.10860236471971149] km/s
|
||||
V∞_out: [1.3258015388055073, 0.008890670618699885, -0.015202352520394155] km/s
|
||||
time of flight: 1.6044052824580787e7 seconds
|
||||
arrival date: 2025-04-13T18:05:11.159
|
||||
thrust profile: [-9.649476733530478e-5 -3.874129604104022e-5 0.0001243676257598534; 0.00017944991783773494 -0.0003021068710903314 -0.00023906829442885233; -1.2520197657221369e-5 7.529839362963302e-5 5.22491643077963e-5; 6.0473365960938625e-5 -0.00010443015036179195 0.00013074051319186437; 0.0006044516898117107 -0.00017952114259198458 7.975422345770218e-5; -1.5105320951034641e-5 5.488422632601538e-5 -3.480125630187902e-5; -0.00035693490512667196 -2.9324170471654634e-5 9.386409045588269e-5; 0.0006536233376695634 -0.000323215551438777 -0.000991075858075292; -0.00048048705998534366 -0.0008846136053753608 7.485312552148982e-5; 0.0002457539906734169 2.3610783147200267e-5 0.00031354855012369744; 0.0003084291416236774 0.00030133549870160124 0.00012216085485925468; -3.145870054396133e-5 9.600064248608948e-5 -0.00017139285888021958; 0.0002323428803906647 -0.0003932431132474737 -0.00038269549666544874; -9.648756923300717e-5 7.371414257236465e-5 -0.00010492608262327025; -0.00016513882219009883 5.681301427250039e-5 -0.00023413816734468073; 0.0001688227002363334 3.9296604381294236e-5 -0.0002465079878323193; 4.223349001330004e-5 0.00018462477409466818 0.0004274596352430292; -7.266996009870076e-6 -0.00023420474628868667 3.054421622059266e-5; 4.4599716714522025e-5 -0.00015080232626015259 -0.00017624139057002226; 2.058233894174994e-5 -2.9681895453803056e-5 0.00010285445493880417] %
|
||||
|
||||
Mass Used: 0.04864906937473279 kg
|
||||
Launch C3: 22.508472910438055 km²/s²
|
||||
||V∞_in||: 1.3258674897215847 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T22:29:19.608/plot.html
Normal file
22
archive/EM_3-29/EM_2022-03-29T22:35:03.801/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T22:35:03.801/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-10-15T00:59:25.735
|
||||
Launch V∞: [0.08411754828864794, 3.867780292357817, 2.507975455218117] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-0.01111567461793714, -0.2019526290080634, -0.10099494494608693] km/s
|
||||
V∞_out: [0.05863131293194478, -0.1437072200747788, -0.16341819092150492] km/s
|
||||
time of flight: 2.122969403809613e7 seconds
|
||||
arrival date: 2025-06-17T18:07:39.735
|
||||
thrust profile: [-0.0019253353195135495 -0.006208595765491277 -0.0030413706831210283; -0.005094954059343889 -0.006884862652799308 -0.007716049803660748; -0.001169679362784149 -0.003040509785898553 -0.0023827736029818115; -0.0009800602675577555 -0.005005973318342694 -0.0007235675342944551; -0.0035541375195941027 -0.0010759580832810519 -0.0011368932928665326; -0.004023727803229634 -0.0024144419030426778 -0.0020601786180336804; -0.009415901341030907 -0.007648304620004416 0.008910953721132594; 0.00019160911662570728 -0.00041311185476429913 0.002747155966524439; -0.0005053512629044138 -0.000435305465528584 0.0010810134121178056; 0.0018400336528207576 -0.006748721129952468 0.002259933413232509; 0.00022745932395296879 0.010666778341568943 0.0035537786550811704; -0.0004423321131218159 -4.1278833244748e-6 0.0012966352168264361; 0.00584099379819922 0.010506361039734275 0.0023162665551785394; -0.0013489272396317838 -0.0016553055603146898 0.00247736021958195; -0.0003060718810677023 0.0030689000185227426 -0.00026453391075189313; -0.004902002300222478 -0.006091743775746333 -0.0007723370782334376; -0.0010727586684161662 -0.0015117821322166705 -0.0011100152254532457; 0.001981284413785558 0.002082711629710382 0.000757647029883398; 0.0002652136199514425 -0.004511943969868106 0.0007431379304516129; 0.0007883244474613861 -0.00476964812130089 3.034140598992801e-5] %
|
||||
|
||||
Mass Used: 0.9889560483511559 kg
|
||||
Launch C3: 21.256741035858134 km²/s²
|
||||
||V∞_in||: 0.22607167334751047 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T22:35:03.801/plot.html
Normal file
22
archive/EM_3-29/EM_2022-03-29T22:38:25.802/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T22:38:25.802/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-10-07T17:37:26.448
|
||||
Launch V∞: [-1.132800064227913, 4.057296625668816, 1.8160423657393692] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-0.09025126720242063, -0.16294649165165395, 0.002018029101130675] km/s
|
||||
V∞_out: [-0.18204756492089805, -0.026081869886201665, -0.0286582298370937] km/s
|
||||
time of flight: 1.7138821243684784e7 seconds
|
||||
arrival date: 2025-04-24T02:24:27.448
|
||||
thrust profile: [-0.001053336200227854 -0.00028654474915887655 -0.0003820424031938627; 0.0008512529608243817 0.0008846317646016004 0.00025282033285603365; 0.00042096876484458586 -0.000407673670480482 -0.000928628092675361; -7.585307650884643e-5 -0.00013518461742213344 0.00156643510514752; 0.0008460627785635593 -0.0007843263217494761 -0.0007202803479853547; 0.002018749793184083 -0.00017983404176264242 -0.0006659097248956292; 0.00040668294946816447 0.0009420606711834561 -0.0007751842339076142; -0.0002948940003770048 1.1828072211327191e-5 -0.00013445879115795128; -0.0004411373325257146 0.002302823369497903 0.0007032460495624283; -0.0004305359949988352 0.0003086368359122586 -0.00012577020060691192; -0.0004796057040344445 0.00048325375373444216 -0.0012858708318398222; 0.0007082846291908338 0.0014131843493881463 0.0012334716036545182; 0.0007516628476279127 0.00019283672154011742 -0.00047698959544296255; 2.8585166048847224e-5 0.0004721397839283915 -0.0004494052618972365; 3.140121868826565e-5 1.8672409758238784e-5 -0.0010892419657405827; -0.0012387600934636242 0.0010224726118372646 0.0005096784526400515; 0.0004830392791164112 -0.00018504611294579005 -0.0007919144470676173; -0.0002823515956750592 0.00015118295801919124 -0.0004211043216927825; 0.000699667738192727 0.0008572250810665738 -0.00044787467026235686; -0.0013106710074165672 1.8187501171149852e-6 -0.0013087579926788614] %
|
||||
|
||||
Mass Used: 0.17400800233144764 kg
|
||||
Launch C3: 21.04290176833857 km²/s²
|
||||
||V∞_in||: 0.18628183704988058 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T22:38:25.802/plot.html
Normal file
22
archive/EM_3-29/EM_2022-03-29T22:49:56.957/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T22:49:56.957/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-09-12T20:18:50.704
|
||||
Launch V∞: [-1.2901325972737976, 3.5232401246782135, -4.555427856822656] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [-0.47357409467459016, 0.6120735570744102, 0.2493748383223478] km/s
|
||||
V∞_out: [-0.5474046060397546, 0.593375716049692, -0.4503838007744617] km/s
|
||||
time of flight: 2.33568000005211e7 seconds
|
||||
arrival date: 2025-06-10T04:18:50.704
|
||||
thrust profile: [-3.7741093121961535e-8 -2.6257971335176648e-8 -2.1606384855810645e-8; -2.1363083523959785e-8 -4.234571308044473e-8 -8.269824340036801e-9; -1.7179727443085232e-8 -4.817903392853783e-9 1.1405733095493886e-8; 6.543773827193354e-8 7.63399812774497e-8 3.918240890364693e-8; 1.3414420888442994e-8 1.4060087327107107e-8 -8.242716667432803e-8; -1.8088388278070475e-10 -4.1359611682043475e-10 -9.03470171888568e-9; 4.3064264083954854e-9 3.2442366380236367e-9 -1.598356883588943e-8; 3.261934834405667e-8 6.450483621536437e-8 8.2007353416575e-8; -1.7993125019529573e-8 3.862145335097065e-9 5.231141768695811e-9; 2.5346874206765178e-8 2.0165133642770633e-8 5.961057304477184e-9; -1.8904868856526572e-8 -1.201092354618878e-8 -2.4170378084370648e-8; -1.1110813643371359e-8 -9.930972424447597e-9 -2.2310217231961474e-8; -2.3010965850571813e-8 -4.590923869358927e-9 -5.082758311888812e-8; -1.064446394813755e-8 -1.6835335671720645e-8 -4.524794179174139e-8; 1.6919283931076332e-9 2.0866300176185552e-9 -1.1111279350528446e-8; -4.352351680251087e-9 -5.215082497858078e-9 -1.2228449319478551e-8; 6.0054113300816905e-9 -7.05448971432868e-9 -5.6941027568265595e-9; -1.951082125424566e-8 1.1499547353566501e-8 -5.019589935213733e-8; 1.197134200084507e-8 -2.127430780809517e-9 4.800535709688631e-9; -1.311850186946498e-8 2.508766374053081e-8 3.5397163567430844e-8] %
|
||||
|
||||
Mass Used: 7.579702014481882e-6 kg
|
||||
Launch C3: 34.82958605340684 km²/s²
|
||||
||V∞_in||: 0.8130770396493041 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T22:49:56.957/plot.html
Normal file
22
archive/EM_3-29/EM_2022-03-29T22:58:44.883/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T22:58:44.883/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2023-04-14T07:05:59.170
|
||||
Launch V∞: [1.6949045581275466, -1.1749158457323354, 0.4459844940604056] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [0.2807404173223861, -0.5148397948760617, -0.024574238754993954] km/s
|
||||
V∞_out: [0.4816521199334624, -0.31105824990728403, 0.021223537272540942] km/s
|
||||
time of flight: 1.0181159999765144e8 seconds
|
||||
arrival date: 2026-07-05T16:05:58.170
|
||||
thrust profile: [1.4156868146913603e-5 -8.937824771836181e-6 -1.4258721529256393e-6; 6.201501805968712e-6 4.891054084739865e-6 -2.4147768084891413e-5; 8.710377800639082e-6 -2.5247715656786118e-5 -4.228464809233087e-5; -5.49592858423698e-6 -5.956986519709633e-6 -6.0003598197038516e-6; -2.2049093171105036e-6 -2.489010425867444e-6 -3.9225913222362265e-6; 2.1078914306123458e-5 -1.1944173566312533e-5 1.8244198561717057e-5; 1.9561991087389005e-6 -1.1752657963774734e-5 1.683487450213938e-5; -6.055159240369156e-6 -2.206637657527475e-5 1.5277910735365964e-5; -2.1063568637137504e-5 1.0199794653949234e-5 -1.0165697723410959e-5; 0.0006945866286583284 -4.8718537131140276e-5 -0.0010004798714153944; 3.549819219472579e-6 -5.173787731590263e-6 -8.794510883495692e-6; -1.1187037009877784e-5 3.9873466996776687e-7 -1.2842230899218392e-5; 1.819371322436169e-5 -1.985114604615626e-5 7.40305445774715e-6; 4.351771410931808e-6 -1.2633771406394241e-5 4.02517242765969e-5; -0.00021811083392391314 -0.006360908650050679 0.007451776526230452; 0.4683451802604527 -0.7651039839559246 0.09069086407503833; 0.8713044694433868 -0.27831401933737787 -0.20462753606922815; 0.012344351227493076 0.0030669853424402133 -0.014728214668807213; 6.768683876914276e-6 7.65498676530381e-6 -2.3634699931764597e-5; 5.463932969042515e-8 1.6589754704890928e-6 -6.114493334584618e-6] %
|
||||
|
||||
Mass Used: 75.80031539540141 kg
|
||||
Launch C3: 4.452030874656779 km²/s²
|
||||
||V∞_in||: 0.5869234102647126 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T22:58:44.883/plot.html
Normal file
22
archive/EM_3-29/EM_2022-03-29T22:59:31.051/mission
Normal file
@@ -0,0 +1,22 @@
|
||||
/home/connor/projects/thesis/archive/EM_2022-03-29T22:59:31.051/mission---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2023-12-23T04:52:28.411
|
||||
Launch V∞: [-2.3721677208600336, -1.1471540814232561, 1.82724714241875] km/s
|
||||
Phase 1:
|
||||
Planet: Mars
|
||||
V∞_in: [0.7657978493736273, 0.47268498190867225, 0.5669638080447448] km/s
|
||||
V∞_out: [0.671344291602754, 0.7165876747149759, 0.4086328277033566] km/s
|
||||
time of flight: 6.692110088878082e7 seconds
|
||||
arrival date: 2026-02-04T18:04:08.411
|
||||
thrust profile: [0.0008233730574660627 -0.0006089913686355275 -0.0003656792494954692; 9.277035119329392e-5 0.00018105994933842137 -0.00045064421020144603; -0.0009643656591043792 -0.0005295771327107068 -0.0003527133652685661; -0.0001829291084087302 -0.00028713103539127654 -0.0011612339233188311; 0.0002628094997902115 -0.00038049047451517036 -0.0004438420586700227; 0.00022847673868341134 -8.081668903608331e-5 -0.0004169573293423967; -0.00024469370633056417 -6.337239455279198e-5 0.0008380473882381952; 0.0007752101556583943 0.0006834443935228009 0.00015265143847038387; -5.4459788825500716e-5 -0.0014820986794018846 -0.0012653925633815618; -0.00021218967607504187 -0.00020847681093790597 -0.0002734855651715473; -0.00017082953277056904 -0.00011256508693154773 0.00152134489853549; -0.0007743596333968497 8.88770635961271e-5 0.001957585876424173; -0.0009465135793430943 -0.0008606487267644376 -0.000381605440474747; -0.002413182432020938 -0.0026073704810047824 -0.00027904268175806847; -0.0005254492375900773 -0.002157747734677348 -0.001799801241758866; -0.0005194698886906513 -0.001005331073405558 -0.0013843897937889358; 0.00048689741373146193 -0.001401700406807511 -0.0024375166130219906; 7.266464024313168e-5 -0.00033741672866423523 -0.0004478141428623512; -0.000586239166722991 0.00012793840622519977 -0.0009074360302595961; -0.00018809051058659194 9.565179941071708e-6 0.000633927457634841] %
|
||||
|
||||
Mass Used: 0.7381269704351325 kg
|
||||
Launch C3: 10.281974301893808 km²/s²
|
||||
||V∞_in||: 1.0636378132897837 km/s
|
||||
30
archive/EM_3-29/EM_2022-03-29T22:59:31.051/plot.html
Normal file
22
archive/ES_0.5550120742732497
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5550120742732497---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-14T21:35:13.618
|
||||
Launch V∞: [8.092028247187812, -5.690394550179761, 0.15870337020149677] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [0.007258340410626599, -0.004915549405160574, -0.0003090327712008995] km/s
|
||||
V∞_out: [0.0063943921161191295, 0.0029021314271309787, -0.005208376883488668] km/s
|
||||
time of flight: 1.8749577773970667e8 seconds
|
||||
arrival date: 2030-04-23T23:44:50.618
|
||||
thrust profile: [0.23623549046119796 0.001523213801416841 -0.0746418855277079; 0.04989778371798442 0.028557974139368027 -0.05866465575542369; 0.035473791749751 0.032507089227488954 -0.0752484296384085; 0.022627986747173957 0.026966919764486865 -0.07156789250913552; 0.04964790396262216 0.0738833298025964 -0.19559483393516622; 0.030631999959579347 0.05365872568512533 -0.15864114884262576; 0.00671793812371244 0.012495789298607023 -0.044004855933096255; 0.006194981641432508 0.01299461151504057 -0.04773667381981179; 0.0013970455272782531 0.0035097621778593085 -0.014148581638031872; 0.0014625087521359605 0.004576093171820035 -0.01812047518926974; 0.0003621287391874434 0.001192919920759847 -0.003924447420406894; 0.0003136102108716024 0.0009510767434047032 -0.003683238027775159; 3.55672194873085e-5 0.0002056947097665128 -0.0009531573613879192; -0.0002219678836028774 0.0002992512020633661 -8.263424581589065e-5; -4.180089723821831e-6 8.500643051220536e-5 2.6176105870720138e-5; 3.966745018590377e-5 5.7559670861396866e-5 -0.0004168195496730593; 0.0002960669240380866 -0.00015608457398720793 9.887024972396908e-6; 2.993253329593611e-5 -0.0001879527007887196 -2.49699959259209e-5; 1.3018003450243295e-5 9.194287517786575e-5 -0.00012566784156294738; -0.0002730423797779337 -0.0001543084966874625 0.0006099289590901544] %
|
||||
|
||||
Mass Used: 76.50834802879126 kg
|
||||
Launch C3: 97.8866980497143 km²/s²
|
||||
||V∞_in||: 0.00877163797273837 km/s
|
||||
22
archive/ES_0.5550208270049417
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5550208270049417---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-14T18:10:53.965
|
||||
Launch V∞: [7.99263082663398, -5.710825212380063, 0.28059984202471117] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [-5.081837842560198e-10, -8.526455361768017e-10, -1.1565873973246667e-9] km/s
|
||||
V∞_out: [4.964101468366639e-10, -4.5035093005423074e-10, 1.7219192649203768e-10] km/s
|
||||
time of flight: 1.8749577787459874e8 seconds
|
||||
arrival date: 2030-04-23T20:20:30.965
|
||||
thrust profile: [0.32604352432509304 0.00497882797405257 -0.10153659307532245; 0.08445557926807248 0.04770044497023833 -0.09876572943386014; 0.033814070938876443 0.03018025570008468 -0.07300715991004297; 0.04608492411200257 0.0518833149313619 -0.1402660440388014; 0.03884834060219632 0.05278582239338074 -0.14923754573973316; 0.024518500102988346 0.03851013799255814 -0.12433716735236557; 0.00839084566979026 0.015974089948533197 -0.05717977600828847; 0.002497601368124247 0.0054421434781545845 -0.020810974438023645; 0.0012413447145525596 0.003104261838811333 -0.012454121622946294; 0.0002952832571111387 0.0006843670541546354 -0.0028868476886487614; 0.0002931078507387595 0.0009010664583775347 -0.0039940493932757075; 0.0006102507561287979 5.497645561287055e-5 -0.0019532697253708416; -3.7401073132043664e-5 0.00015948185812392776 -0.0007709409707993484; 1.226625166987844e-5 0.00024697253219265044 -0.0010752432398616358; 0.00014082333847703063 -0.0002924799291983615 -0.000786251473718327; 0.0003353336674723642 -0.000283886936406187 -0.00034286151268318505; -0.00015730876019493466 -0.00018136052791405924 -0.0005175862044128118; 0.0003787936943271113 -0.00016400095160184442 -0.0004126141053205723; 0.00016691849941922272 -8.257856256590926e-5 -0.0007529951300763956; 6.211451468212878e-5 -0.0006887860553681131 -0.00026154920097938784] %
|
||||
|
||||
Mass Used: 84.17358245583273 kg
|
||||
Launch C3: 96.57440840855986 km²/s²
|
||||
||V∞_in||: 1.524122559570995e-9 km/s
|
||||
22
archive/ES_0.5551378686311677
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5551378686311677---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-15T00:58:50.661
|
||||
Launch V∞: [8.11320959943097, -5.645724124239646, 0.16747696452458005] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [-2.8516363421996975e-10, 4.096121164742909e-9, -2.0697877390789584e-9] km/s
|
||||
V∞_out: [2.0790724859932675e-9, 4.127970936657118e-9, 1.0865120878585403e-10] km/s
|
||||
time of flight: 1.874916083184456e8 seconds
|
||||
arrival date: 2030-04-24T01:58:58.661
|
||||
thrust profile: [0.2754868791323259 -0.004110502019187116 -0.09891196486261492; 0.04324638696098478 0.02247517183605698 -0.05675135816253204; 0.03892904890147251 0.03216852322138361 -0.09100809525201009; 0.03303057370015382 0.035080690423428366 -0.11279234928351167; 0.02181869863261611 0.025269776676374003 -0.09431813772381838; 0.0169559793237119 0.03232455050637029 -0.13374662433915915; 0.016111389795168594 0.023249907977486148 -0.09458558132535513; 0.007205435769196988 0.014290387230894463 -0.07630245560011156; 0.0015616439293485633 0.002593925533434509 -0.014198480084020042; 0.0006398647395756223 0.0011455341196065034 -0.0066362673778835824; 0.00021448383373943162 0.00048461036268397813 -0.0020121857045428612; -0.0005031708667670048 -0.0003846320758830172 -0.0002312837647398825; 4.666007485336052e-5 0.00010280240718190181 -0.000841627809911724; -8.908260282730824e-5 -5.559857473515914e-5 -0.0008097588799996763; 1.4481010457650478e-6 -0.00016875008215481904 -0.0011842708445230653; 8.682995627457883e-5 8.033742269629829e-5 -4.432971042893808e-5; -0.00029798252705925894 0.00034156180315709714 -0.0006198193274259149; -0.0003061369792923545 -3.25929632625721e-5 -0.0007753052016491007; 2.7198081862265237e-5 -0.00015657437876687814 -0.00016057616392290677; -0.0005144350151837572 0.0002711169996963231 0.0005113294575712331] %
|
||||
|
||||
Mass Used: 77.59006675738965 kg
|
||||
Launch C3: 97.72641942496672 km²/s²
|
||||
||V∞_in||: 4.598211410905106e-9 km/s
|
||||
22
archive/ES_0.5552532074026435
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5552532074026435---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-14T13:38:12.292
|
||||
Launch V∞: [8.091283750679898, -5.626635631419599, 0.189242070274835] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [-5.760551537680362e-6, -5.050483257379123e-6, 3.7047645776349366e-6] km/s
|
||||
V∞_out: [-1.1464642842370578e-6, -8.482842549920137e-6, 4.006955504298592e-7] km/s
|
||||
time of flight: 1.8749577787195104e8 seconds
|
||||
arrival date: 2030-04-23T15:47:49.292
|
||||
thrust profile: [0.3001191479994197 -0.006491492540972167 -0.10464367891257732; 0.06669371816510525 0.03453350155639435 -0.08275270232210559; 0.03536397022771856 0.028803940826913527 -0.07940536141313202; 0.0479031470852905 0.05031449999723751 -0.15633707136393596; 0.0227660622647329 0.02810528294508086 -0.09968877657664008; 0.018663950493618714 0.02640831159581204 -0.10302780588601725; 0.0128353574734969 0.020056380762119467 -0.08538358674836405; 0.0031883438304667546 0.00558050655485686 -0.025950802036505877; 0.0027307797561800743 0.004971522664544287 -0.024911312123720334; 0.0028886832927905236 0.005725178841952505 -0.02999853498002678; 1.8498507329809847e-5 0.00026193660437474165 -0.0015378352139950996; 0.00017006631355532425 0.00033839543051414307 -0.0008140991473821627; 2.4363084752065985e-5 0.00025524852033090707 -0.0012725427249475124; 0.0001979064541212937 -0.00022515932940935895 -2.233079341374544e-5; -3.4010641263911365e-5 6.898200899598042e-5 0.0003681680601600602; 0.00014706194029745758 6.356885199978188e-5 0.00015283040927299658; 8.779556518282857e-5 -0.0002222581120165586 -0.0006308406782991736; 0.00038537671846016884 0.00019393847803101028 -0.000166612423212043; -0.00053483701939234 8.97317069416954e-5 -0.0002836580926078503; 0.0005714255507435241 -0.00021619220466183268 0.000304464977576498] %
|
||||
|
||||
Mass Used: 81.00707799677275 kg
|
||||
Launch C3: 97.16371382393909 km²/s²
|
||||
||V∞_in||: 8.509795281147307e-6 km/s
|
||||
22
archive/ES_0.5553166446815165
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5553166446815165---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-14T22:04:01.158
|
||||
Launch V∞: [8.077142685491271, -5.680604962234028, 0.22204191555666666] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [8.201127399571204e-5, 5.893101311930579e-5, 0.00409450763245035] km/s
|
||||
V∞_out: [-0.0036567863569022425, -0.0012346203807321937, 0.001370498501299504] km/s
|
||||
time of flight: 1.8749577787492463e8 seconds
|
||||
arrival date: 2030-04-24T00:13:38.158
|
||||
thrust profile: [0.23235381129437543 -0.003499034305839029 -0.08150403458003942; 0.101359804889319 0.053657256711614386 -0.12459306140607117; 0.05618052836256829 0.04661460558293996 -0.12432883331653731; 0.038855766875548 0.04125153478496184 -0.12666684845314194; 0.025324118959891024 0.03180040241628622 -0.11099802659340433; 0.018478048063072357 0.026519644261497784 -0.10244311481816155; 0.007574926049108344 0.012062456593750713 -0.051995067543366115; 0.002624539505975554 0.005028891200910454 -0.02411669381157359; 0.0006496950209796248 0.002177155222280389 -0.011592438398649882; 0.0028996826262880884 0.005977834449005585 -0.03111401744332391; 0.00030076578793983527 0.00014708272998598834 -0.001579162518567829; 0.00023884269622201395 0.000308440831864644 -0.0016554872014328096; 0.00016125989310068078 0.0002270644731231439 -0.0002677537550706303; -0.00013653939452338545 -0.00010107875347949283 -0.0006344926280171012; 0.000306835791899565 -2.9310951884917624e-6 -0.0007611802470456345; -0.00018689220058042605 -0.0006643014207581224 -0.00047628754239393363; -6.151749483983737e-5 -0.000734193329061956 -0.00030386985203754914; 2.7399404531041125e-5 -0.0001244879414403385 -6.18471749763314e-5; -3.344731595064874e-5 3.940331310237355e-5 0.00022350296642900322; -0.0008629912071055299 -0.0011018916049755144 -0.00047252733763793707] %
|
||||
|
||||
Mass Used: 78.7763644808947 kg
|
||||
Launch C3: 97.55880931100707 km²/s²
|
||||
||V∞_in||: 0.004095752856992697 km/s
|
||||
22
archive/ES_0.555321853072159
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.555321853072159---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-14T07:57:24.826
|
||||
Launch V∞: [8.1332663571246, -5.661986515759155, 0.22766044177874376] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [1.123340652251088e-6, -3.7330513819710547e-6, -1.0846981586769346e-5] km/s
|
||||
V∞_out: [-1.0492432785177735e-5, -1.2239051288617402e-6, 4.687451703815964e-6] km/s
|
||||
time of flight: 1.859737203924726e8 seconds
|
||||
arrival date: 2030-04-05T19:19:24.826
|
||||
thrust profile: [0.22943973812293017 -0.004893967763726286 -0.0801253153441409; 0.03144507004413593 0.016005514878668727 -0.039605355975015175; 0.039054529766301194 0.03197291138034155 -0.08689490156094459; 0.0378685260709824 0.04018324616401574 -0.12252200644008435; 0.02803090143364196 0.03535274273841469 -0.12081216327733243; 0.022471665512052253 0.032497625582222536 -0.12157198448109055; 0.01926878492754949 0.03153169051058213 -0.1281842797483311; 0.004043038254003434 0.0066904694410549765 -0.031175306636595977; 0.005131609501874749 0.009234170160377442 -0.04469930754406368; 0.0003470121363472272 0.0008038663204159477 -0.0038167565883837525; 0.00017609752178919131 0.00036474064628598307 -0.001954724463038849; 1.130336567161233e-5 -3.20909344426444e-5 5.0861087076908916e-5; -1.4439041978965607e-5 6.264510601075898e-5 -3.5503708158925043e-5; 0.00012451312434083361 -0.00034084972505136796 -0.0002481717343390714; -2.1043042384554106e-5 -9.974133023427434e-5 0.00022586203596731763; 3.0325725366321253e-5 6.145296121523383e-5 -0.0003832387995866655; -0.0002927026986088235 0.0007786944928326911 0.00012097830464324579; 8.96770273673005e-6 3.9333968087291074e-5 4.9980603904861806e-5; -1.0699601379404263e-5 -2.0172052201893303e-6 0.000372228156627312; -0.0002084346014800331 0.00032609368117262434 -0.0008865061071454217] %
|
||||
|
||||
Mass Used: 74.69249898312728 kg
|
||||
Launch C3: 98.25994221732427 km²/s²
|
||||
||V∞_in||: 1.152625595695103e-5 km/s
|
||||
22
archive/ES_0.5553222117675201
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5553222117675201---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-14T15:05:53.520
|
||||
Launch V∞: [7.978669656069434, -5.678185132210282, 0.06288544106185495] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [-2.165312749478849e-9, -1.971227457841986e-9, -1.8369808751063008e-9] km/s
|
||||
V∞_out: [-3.660281365501294e-10, 3.2999394084076575e-10, -1.267845070447127e-10] km/s
|
||||
time of flight: 1.8749577786514547e8 seconds
|
||||
arrival date: 2030-04-23T17:15:30.520
|
||||
thrust profile: [0.39564242604082744 -0.006956512613986089 -0.13518366924321792; 0.06712585965363532 0.035648204482678 -0.08142867264258655; 0.04170290709783684 0.035350718096191905 -0.09174748789036437; 0.04352492608733409 0.04770407792297554 -0.14011401076264046; 0.02801348225631629 0.036772428672008674 -0.12141711140061484; 0.026283671902162534 0.04004047420482529 -0.1438274307468821; 0.00847703184692028 0.014366678634369039 -0.05804618230321489; 0.0021762412409529804 0.004185391744174946 -0.017954795552054398; 0.001079457307135401 0.0023049952563308574 -0.010602319561616915; 0.000416421577119403 0.0013468908459330865 -0.0071795189797770175; -0.0003591898924635163 0.0006952444828377452 -0.0024129927467661147; 0.0006183819299710211 -0.0002664932265487625 -0.0019776746683675757; 5.8125164000611285e-5 0.0014147292778764876 -0.001561111670186401; -0.00012928754371600046 0.0002918734607459714 5.5885149871641665e-5; 0.000284543764297461 -0.0011359149866518924 -0.0013977474530503884; 0.0004951169390097958 -0.0003759760138036172 -0.0003820916193990466; 0.0018513876583565177 0.00201643800302882 -0.0002718956342356863; -0.0007442531880618604 -0.0007661924223617269 0.0007792276363972396; 0.00012269135452268562 0.0002372284606531832 0.0005562980079682296; -0.00023389915358777323 -0.00021737906149740262 -0.0007771204183639985] %
|
||||
|
||||
Mass Used: 88.43060274107165 kg
|
||||
Launch C3: 95.90491045503458 km²/s²
|
||||
||V∞_in||: 3.456705907234826e-9 km/s
|
||||
22
archive/ES_0.5553496144128125
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5553496144128125---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-15T09:43:55.880
|
||||
Launch V∞: [8.10317987564361, -5.696207769870157, 0.1553325957128171] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [0.0071934236702311015, -0.004965730312843872, -0.0003038427526265429] km/s
|
||||
V∞_out: [0.006087772048570902, 0.003123568422287049, -0.0054474103900420765] km/s
|
||||
time of flight: 1.874957778749338e8 seconds
|
||||
arrival date: 2030-04-24T11:53:32.880
|
||||
thrust profile: [0.21852782341239765 -0.004394661947521582 -0.07648165853302688; 0.05449869864346815 0.02812137085624257 -0.06778772029616381; 0.04776021625029402 0.038940209444852 -0.1058035321485391; 0.04348954847800777 0.04581182105111091 -0.1413012320654695; 0.029637491747047877 0.03637476513769563 -0.12460063687764829; 0.018263366525342918 0.025934873925837477 -0.09882208381199613; 0.010393645054657355 0.016616604294121748 -0.06984618131900816; 0.0043639850761715785 0.007630836260250351 -0.035106101396778826; 0.004209775504114455 0.007980983235826225 -0.038849059552370294; 0.000718924087536708 0.0015240733431350023 -0.008551699639035671; 0.0007760856452014337 0.001683530519717075 -0.009501196753692152; 0.00011827705906626506 6.830871604105213e-5 -9.79778720163791e-5; -8.181060694363874e-5 0.00047577208223703674 0.0004365344581833665; 0.00024872050721913515 -8.8839932015217e-5 -0.0008270826346074116; 0.0003545586317562617 -0.00013431066679745396 -0.00023797145127221997; -0.0004402873533663245 -0.00047426965980170306 0.0007773248998385402; 0.000818115058563697 0.0006759914714488732 -0.00016756330756562723; -0.00014461160521534074 -0.000715703708641262 -0.00013038677619263433; 0.0005519329299552718 -0.0006737568257195225 -0.000598372441231225; 0.0006763866155410585 -7.404604347327747e-5 -7.334178511644998e-5] %
|
||||
|
||||
Mass Used: 75.4686777407901 kg
|
||||
Launch C3: 98.13243526985563 km²/s²
|
||||
||V∞_in||: 0.008746207295603122 km/s
|
||||
22
archive/ES_0.5553988801556101
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5553988801556101---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-14T20:27:31.829
|
||||
Launch V∞: [8.099371067795309, -5.697342994428108, 0.23961816690038987] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [8.420794762497583e-5, 6.024451843937005e-5, 0.004113130410337279] km/s
|
||||
V∞_out: [-0.003650496205091847, -0.0012380261530165364, 0.0013759417669957801] km/s
|
||||
time of flight: 1.874957778743604e8 seconds
|
||||
arrival date: 2030-04-23T22:37:08.829
|
||||
thrust profile: [0.16756317248501923 -0.0019374981081347836 -0.05553507658755178; 0.12351319739523713 0.0664036700346333 -0.1347883651394778; 0.03980123203677707 0.03566992410321178 -0.0850533180454862; 0.034361614191466876 0.040110551269449644 -0.10705297980293457; 0.03179001997115301 0.046284771186835626 -0.1348862475845847; 0.023807484482126454 0.03937269394744734 -0.12716199488054153; 0.008510351716584706 0.01618435914970713 -0.05802343221350874; 0.004255308128100879 0.009668247630515946 -0.03506206856933895; 0.0012107204699053232 0.002937858550102232 -0.011983965172335811; 0.0017863449653847366 0.003622535975951511 -0.015110293216188748; 0.0002407023305336371 0.0008608860535842083 -0.00389658664661596; -2.1079710467773147e-5 0.0008793513857120929 -0.001967315590027195; -0.00028294766519093974 -0.00034677230489704204 -0.001748699402170058; 4.317707008927486e-5 0.00013589287252711998 -0.00013691337862167894; 0.0001980808409324128 0.0008587519378775326 -0.0025076539679062546; 7.812718254363428e-5 0.0001837438719466311 -0.0006467015644265338; 3.891451479560683e-5 5.552018762208875e-5 -0.0015245825687303762; -0.000110339294204162 0.0003131708817709915 -0.0006406566647075316; -0.0005329265181372854 -0.0006203983788751317 0.0002790052352122322; -6.293376876180599e-5 0.00012561731060751233 -0.0005034354105287017] %
|
||||
|
||||
Mass Used: 75.61650993875173 kg
|
||||
Launch C3: 98.11694575590745 km²/s²
|
||||
||V∞_in||: 0.004114433393905717 km/s
|
||||
22
archive/ES_0.5554018322688501
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5554018322688501---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-15T21:09:00.163
|
||||
Launch V∞: [8.033420980890492, -5.775163290254046, 0.29451139712426244] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [-1.2438520727890286e-6, -1.0851062017930229e-6, 8.218168158950809e-7] km/s
|
||||
V∞_out: [-2.1323339389682597e-7, -1.8295062666380425e-6, 8.40206204986971e-8] km/s
|
||||
time of flight: 1.8749577787468156e8 seconds
|
||||
arrival date: 2030-04-24T23:18:37.163
|
||||
thrust profile: [0.2298938795132756 -0.002382363908888821 -0.07500215742641986; 0.05789187849475886 0.031280672979930334 -0.06995405575677786; 0.043907082176288324 0.03765212776011839 -0.09530427276167132; 0.0511006599696396 0.055510802804240936 -0.1554405077012778; 0.04029329912758011 0.05520684570387007 -0.16865780714135356; 0.013134088356955674 0.019584423155094222 -0.07046550534934869; 0.009439347751905882 0.01592941083088526 -0.06145197693708397; 0.004727927073174679 0.008293510721741467 -0.03720175207021022; 0.0021014155716788238 0.004328291914307116 -0.019935799743980753; 0.0012112852386704117 0.00292969921619415 -0.013082901486547826; 0.00023469430900969806 0.00042648361270350183 -0.002062777628420293; 0.00020187330956979768 0.0003684238860025964 -0.0006286919877773692; -0.00032872241235123545 0.00025130450434917044 -0.0005581186561390136; 8.960475279982197e-5 0.0009770010634579137 -0.001460084323412991; 0.00014360085872644344 -0.00040907257330352956 -0.0004549987596784359; -0.00033797952112663894 5.3210703241990886e-5 -5.717079881615997e-5; 0.00031278347133417337 9.296005909151565e-5 0.0009203157652921157; 0.00016286369672531434 0.00010157592025106992 -0.00042284841744769623; 9.893657168286076e-5 0.00037018789737870185 -0.0006018683982409329; 0.00025852793290105457 -0.00026993613811333384 -0.00035035178740521367] %
|
||||
|
||||
Mass Used: 76.44738386497602 kg
|
||||
Launch C3: 97.97510064834557 km²/s²
|
||||
||V∞_in||: 1.84391060711716e-6 km/s
|
||||
22
archive/ES_0.5554393651791023
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5554393651791023---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-14T02:36:40.662
|
||||
Launch V∞: [8.015320347594308, -5.650891123369662, 0.2072178508051127] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [4.841948938567232e-7, 3.0262022612951473e-6, -7.320127622421485e-5] km/s
|
||||
V∞_out: [-2.8670139796813485e-6, 6.709990609312329e-5, -5.090481414750846e-7] km/s
|
||||
time of flight: 1.874957778737431e8 seconds
|
||||
arrival date: 2030-04-23T04:46:17.662
|
||||
thrust profile: [0.3561233393051751 -0.006098174136111534 -0.10217464052682548; 0.075529100415085 0.042981935167420986 -0.085955833298707; 0.05625615221667444 0.05130512609124765 -0.11551167241473989; 0.028197870651471384 0.034050987079248286 -0.08872363919572951; 0.029633021923308987 0.044345294692114644 -0.12486581772974435; 0.01669701348555364 0.028429102130839184 -0.0882282269142744; 0.015070735029327714 0.029937519248560016 -0.09967715481440458; 0.004956474253619485 0.011120126539336708 -0.04064673764428253; 0.0029161054415206195 0.007261967087240697 -0.028496728159587727; 0.0007415412516860645 0.0024616981819384764 -0.00998170261897817; 0.0007314468835220106 0.0019219528185446752 -0.008196849127401115; 7.654371182347835e-5 5.175821500414929e-5 -0.0006458280190958221; 0.0004010858247077206 0.0003286324930280675 -0.0025331981139017036; -6.359708081627111e-5 0.00010070213111805287 -7.147574326211124e-5; 4.941999308085874e-5 -4.143989876220452e-5 9.688743444445332e-5; -6.842487568673179e-6 -0.0001350788482258876 -0.00026026602539886627; 3.6011482074926058e-6 3.396170081582984e-5 0.0003726245143131632; 1.3766361989915927e-5 9.16724968035497e-5 -0.0007902845208497627; -0.00014868028269059738 -0.0003371631928999702 -0.00011851450358111291; -7.681987945286134e-5 9.23427662999305e-5 7.590759767921873e-5] %
|
||||
|
||||
Mass Used: 86.72418437311308 kg
|
||||
Launch C3: 96.22087000042966 km²/s²
|
||||
||V∞_in||: 7.3265402378444e-5 km/s
|
||||
22
archive/ES_0.5554813218194097
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5554813218194097---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-13T23:31:28.392
|
||||
Launch V∞: [8.0891473400973, -5.692973902821432, 0.17080604884838232] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [-2.624253055295607e-10, 2.6031116525534865e-9, -1.963240950595241e-9] km/s
|
||||
V∞_out: [1.5057182218987104e-9, 3.0319245946678542e-9, 7.812492911139819e-11] km/s
|
||||
time of flight: 1.8524360854352963e8 seconds
|
||||
arrival date: 2030-03-28T00:04:56.392
|
||||
thrust profile: [0.22235856867229353 -0.00847503054598866 -0.08028226199077587; 0.07529283563064769 0.03759533143754159 -0.09315704925425514; 0.048321534442807665 0.0383265421453116 -0.10749810607402345; 0.03802125053160061 0.038623386474410916 -0.1235390067423918; 0.035035407326052946 0.042471937457964466 -0.15068597133732428; 0.0221428992625299 0.030381962912583303 -0.11963989862423495; 0.012030072795253723 0.01812043871300703 -0.0786051663508672; 0.0035871556203987648 0.005845780417505831 -0.02754848675183922; 0.0017038630505681143 0.002812994055315353 -0.015134097962005714; 0.0004559181219149022 0.0007414201032812668 -0.004822885634474083; 0.00019366963896819508 0.0003134059853220376 -0.0007272799277156995; 0.000245281514840613 0.0005535934511823185 -0.002713600883880549; 0.0001552398158292699 0.0001613321569179683 -0.00028192567763878843; -6.622549407408435e-5 -5.6893192231886834e-5 0.0004896166245428691; 0.00023118820212565642 0.00015471716146732504 0.0006653987429265666; 0.00011596005606976002 -0.00011503710953939407 -0.0002432255567259898; 6.198729085098857e-6 -0.00014805820961753878 0.000805655991443695; 0.00036292064525340374 -0.00019917999642682892 -0.00015432941473323157; 0.00032732974457299555 0.0004531813500036276 -0.0005485052880291339; 0.000614074688792294 -0.0008165598404809293 0.000334425216688537] %
|
||||
|
||||
Mass Used: 77.13319313903958 kg
|
||||
Launch C3: 97.8734312543323 km²/s²
|
||||
||V∞_in||: 3.270989505751453e-9 km/s
|
||||
22
archive/ES_0.5555149418109946
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5555149418109946---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-14T16:16:45.227
|
||||
Launch V∞: [7.886453692881989, -5.766146669242591, 0.17731826006147883] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [-4.836910169257413e-10, -9.375329875181162e-10, -1.1582799285250461e-9] km/s
|
||||
V∞_out: [9.504450631657843e-10, -9.110896323774704e-10, 3.2446331384196525e-10] km/s
|
||||
time of flight: 1.8578408420707503e8 seconds
|
||||
arrival date: 2030-04-03T22:58:09.227
|
||||
thrust profile: [0.42007645142641625 -0.02131548891750738 -0.14069301019438915; 0.08953349621835163 0.04150785072471936 -0.11169464971176427; 0.06786122343006948 0.04954984121876103 -0.15101372550178468; 0.03674577054207439 0.033749736956093415 -0.12061690355354283; 0.022125015413372588 0.023934154012362156 -0.09634798551306989; 0.024730692216342626 0.029776021239070798 -0.1317667777392725; 0.0074123780950023236 0.009856747845124348 -0.048619156418719646; 0.002694714312697033 0.003884994057635316 -0.02125927372055324; 0.0017148813402562892 0.002663889746125444 -0.01530517929419418; 0.0005610342798146018 0.0008897162395053332 -0.005413768922161111; -6.208974296115196e-5 1.0228331061479925e-5 -0.0003640360929690432; 0.00010073726097622381 -3.56832836566312e-5 1.644789268456803e-5; -9.148431767651544e-6 9.923576995625314e-5 -0.0004964428076852081; -2.7239255440105487e-6 1.555041927077985e-5 -4.85747570741195e-5; 2.030947003099046e-6 2.4184634377666606e-5 -8.020747864168754e-5; 7.26642570323925e-5 0.00018837509337221064 -0.00039135500520177214; -0.00015038100314065543 0.00043575027422096396 -0.0005037035493860557; 0.0004557424872628663 -0.0003999451460967983 -6.622367583560193e-5; 1.2464616354565701e-5 0.0005183325062460401 2.1627829344008482e-5; 0.0003892447055876588 0.00022211057796742216 -0.0006804821734761649] %
|
||||
|
||||
Mass Used: 91.1571927913401 kg
|
||||
Launch C3: 95.47604102654061 km²/s²
|
||||
||V∞_in||: 1.5666963634869674e-9 km/s
|
||||
22
archive/ES_0.5555886306746982
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5555886306746982---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-14T21:45:44.751
|
||||
Launch V∞: [8.097157966208412, -5.7235444752915985, 0.1306763857131603] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [1.354583227548992e-6, -2.033861909972328e-6, -1.9902747505106622e-7] km/s
|
||||
V∞_out: [1.711149734140751e-7, -8.486974320046878e-7, -2.2954795020027925e-6] km/s
|
||||
time of flight: 1.874957778749071e8 seconds
|
||||
arrival date: 2030-04-23T23:55:21.751
|
||||
thrust profile: [0.13697728884613816 -0.0012462171285798694 -0.04231430720767637; 0.09061310387649295 0.04941404808359705 -0.09301349514541098; 0.07206425953696069 0.06270967380872773 -0.1316019524779482; 0.05142325879063578 0.05789117521336941 -0.13907928980775816; 0.034724693966127596 0.04696247910122261 -0.1271640404615248; 0.021664043227228043 0.03406718740673748 -0.10162959083047443; 0.011526309808033661 0.02088953844172639 -0.06650568585777802; 0.0036540813082757075 0.007795868388542844 -0.026782258005114218; 0.002748998147299548 0.006167505533935089 -0.022833530110010134; 0.00045966652234908853 0.0020603589920435974 -0.004837216705160525; 8.331411168620227e-5 0.0012795607654485688 -0.0009501956463345632; 0.0009148806188941994 -0.0004167900274393787 -0.002174374051332414; -0.0013790567604535032 -0.0002999678699475404 -0.002259765855076702; 0.0002308293331623607 0.0003590641436721085 -0.0014202991854615767; -0.0006471076503101953 0.001336938439675547 -6.724792531199639e-5; 0.0017802574380088548 -0.00032790554594502115 -0.0007366313548920879; -0.0003033508980936425 -0.0026991605543110735 -0.0018136105163869749; -0.00024710811844636996 3.984844856063307e-5 0.0012667890406400152; -2.865006595770774e-5 -1.810085979889913e-5 -0.00011678869749445135; -0.00013489262485826345 0.0005807050881182493 -0.0005724390058631687] %
|
||||
|
||||
Mass Used: 74.53670773956901 kg
|
||||
Launch C3: 98.34000480815638 km²/s²
|
||||
||V∞_in||: 2.4517548664208936e-6 km/s
|
||||
22
archive/ES_0.5555895920983202
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5555895920983202---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-13T15:32:29.766
|
||||
Launch V∞: [7.954026518859595, -5.651936525144275, 0.34283036341455375] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [-1.4772590225260715e-5, -1.2392091138211298e-5, 9.497081706989166e-6] km/s
|
||||
V∞_out: [-2.7897781490311477e-6, -2.129279966966492e-5, 9.546532130825573e-7] km/s
|
||||
time of flight: 1.8749577787603047e8 seconds
|
||||
arrival date: 2030-04-22T17:42:06.766
|
||||
thrust profile: [0.4221003625778134 0.0024543240573022336 -0.12460143742651807; 0.08841015987257779 0.05250420784808357 -0.0967517469099731; 0.05316870742999599 0.05056322435215213 -0.1062279546235885; 0.03886614863645844 0.04944665659247456 -0.11689275674361002; 0.02500576523814115 0.04066644559618659 -0.1069162014326775; 0.0195872956233084 0.03673437221585266 -0.10476406166276402; 0.010394089317653295 0.021034861908135444 -0.06272875518522406; 0.008328051608330151 0.01222352328662478 -0.043392320306426084; 0.002576596033412328 0.006661521160027185 -0.025507476262502757; 0.0009641193100614219 0.0026478188882584535 -0.01113969788388293; 0.00015409864763691586 0.0005497379206734901 -0.002113724698805902; 0.00016568269854158854 0.0006468183611313067 -0.0028208235559074465; 0.00019734230581279572 0.00011256427006853706 -0.00044691796679938736; -1.611920081808971e-5 0.0001536912782015656 -0.0006493926058376988; 1.2652188508059165e-5 0.00016496459316419325 -0.0006311914772119577; 0.00013136446789655573 -6.599013967282938e-5 -0.0010739640436663615; -4.070635175490843e-5 2.8819239964566348e-5 0.0002686223663615027; 0.0001988522613017184 5.7429486625579095e-5 -0.0008735736425061699; 0.00021337346157853458 -0.0001873608069724977 -0.00030585885166558896; 0.00018152047352259707 -0.0002772759720853931 -2.5427888388273304e-5] %
|
||||
|
||||
Mass Used: 92.10519158518673 kg
|
||||
Launch C3: 95.32845700506059 km²/s²
|
||||
||V∞_in||: 2.1493903919261194e-5 km/s
|
||||
22
archive/ES_0.5555981137552012
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5555981137552012---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-14T15:07:07.613
|
||||
Launch V∞: [8.082773809515784, -5.709511979563037, -0.08221754559998876] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [-4.271618879525547e-10, -9.467188797709204e-10, 2.7925623958736294e-9] km/s
|
||||
V∞_out: [2.0710433474319867e-10, -6.893777317405418e-10, 1.1086040371862895e-10] km/s
|
||||
time of flight: 1.8749577786971304e8 seconds
|
||||
arrival date: 2030-04-23T17:16:44.613
|
||||
thrust profile: [0.19262882219372876 0.0017682977351410924 -0.06078570749456977; 0.07510854426601425 0.04483363097579235 -0.08152090897510195; 0.05247612556652213 0.05173429616485974 -0.10334129305288119; 0.03699212147964636 0.04836776779914272 -0.11420009851892877; 0.015257947545094692 0.023616672516294634 -0.06151535097167395; 0.05017375150264386 0.08830370298816641 -0.2186226342882601; 0.008321797426523236 0.020875746774835446 -0.0620611019471654; 0.0016554003603538512 0.004422884420023118 -0.014999979304444628; 0.0029079581542708643 0.008455953550443632 -0.03441057189742003; 0.0014578145592288889 0.005998444591665279 -0.021590817094686094; 0.00010189419917084582 0.00036538089525199125 -0.0013457387446312698; 3.4267406230693495e-5 0.00012128214999226729 -0.0004984499190272592; -3.630324776009653e-5 0.00013568298390632396 -0.0001933222589807255; -0.00011464061902182116 1.729493075479877e-5 -0.00022822609938822459; 3.130844266011417e-5 -6.033277523730223e-6 -0.00028834664280309296; -2.4080693230419574e-6 2.2064196459154254e-5 -0.00010496253498183353; 5.629619319618323e-5 -0.00017764941434590838 -8.429129071450761e-5; 4.5321256872056e-5 7.763583113794498e-5 3.631885057500916e-5; 0.0001761123035687706 0.00017277995294965204 6.818358448922729e-5; -0.0003107464502650623 6.280586170101499e-5 -5.122958464710797e-5] %
|
||||
|
||||
Mass Used: 76.90143723306119 kg
|
||||
Launch C3: 97.9365192253726 km²/s²
|
||||
||V∞_in||: 2.979454421648595e-9 km/s
|
||||
22
archive/ES_0.5557824943431257
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5557824943431257---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-14T19:54:42.769
|
||||
Launch V∞: [7.947030030148891, -5.725766684710527, 0.24202104722470721] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [-2.759344025344734e-6, -2.4204246885162136e-6, 1.776701782704104e-6] km/s
|
||||
V∞_out: [-3.9976382777979477e-7, -4.0526356815121425e-6, 1.6070450518301959e-7] km/s
|
||||
time of flight: 1.8749577787488315e8 seconds
|
||||
arrival date: 2030-04-23T22:04:19.769
|
||||
thrust profile: [0.3960965326719643 0.004259382470233035 -0.12416769816722709; 0.04264462785093866 0.024163839407926626 -0.05007198382581099; 0.04641569782912802 0.042447237818555895 -0.0976623070227238; 0.06000137009233807 0.07281320449422427 -0.1833637869953763; 0.027339463431665722 0.03988389687606256 -0.11532986210137897; 0.016392180324669884 0.02764688048304604 -0.088278672916249; 0.007684696982986988 0.014735717216941745 -0.051844821781153766; 0.005695678176768902 0.011978794011892344 -0.0450846309818904; 0.0015313692750855378 0.004017116318282095 -0.016246969671378612; 0.0013959084340388242 0.003510673757082177 -0.015182286932493894; 0.00018520527178236566 0.000528320331060851 -0.003527162039857431; 0.0005931763915346057 0.0019233939908585712 -0.008836752661479331; -0.00020609688838255314 -0.00029171179683564006 -0.00016409366406674344; -0.00035832118245100606 0.0009050915210500756 5.1892988268757245e-5; 0.0013802105825223643 -0.0002956780681465251 -0.00018081590039303056; 1.2820170612769873e-5 0.00021476799737743432 -0.0005181737657272314; -7.816440173557716e-5 0.00022768666887319221 0.001407493734060039; 0.002351769163508304 0.00013991003499428924 -0.0009362672492040228; -0.0002162265530962279 0.0020183627256214593 -0.0021072091822542283; 0.00052609584762935 9.227976670804017e-6 0.0008696703291690283] %
|
||||
|
||||
Mass Used: 88.42303314539413 kg
|
||||
Launch C3: 95.998264615129 km²/s²
|
||||
||V∞_in||: 4.077879883916204e-6 km/s
|
||||
22
archive/ES_0.5557834365111958
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5557834365111958---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-14T10:36:44.855
|
||||
Launch V∞: [7.998211811049221, -5.6889764199794595, 0.16579943332476535] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [8.607330122588107e-6, 7.585618519006446e-6, -5.516980767695332e-6] km/s
|
||||
V∞_out: [1.7044773987531268e-6, 1.2573006635761295e-5, -5.978193920049432e-7] km/s
|
||||
time of flight: 1.8749577787394667e8 seconds
|
||||
arrival date: 2030-04-23T12:46:21.855
|
||||
thrust profile: [0.33574349798395897 0.00022780531375672173 -0.10962357523730464; 0.08229530639165769 0.04774551014678654 -0.09587120157684394; 0.056042617861322704 0.05242218020328153 -0.11832645419653522; 0.040295755662508925 0.04970869349161298 -0.12699339828045553; 0.02595014094582373 0.03928316854813051 -0.11236569345355266; 0.013559779913649305 0.023658284920628166 -0.0767136924923864; 0.008592255150081909 0.016720570100730938 -0.059820306918130596; 0.004322661529306686 0.009315012365338918 -0.03486570051548452; 0.003482728722009579 0.008317889096073222 -0.03367490985583191; 0.0015227573128690293 0.005144050668324006 -0.022075030429857635; 0.00010926529240131475 0.0005843875807441641 -0.004574145172846127; 0.00027819379105144227 0.003182601609830852 -0.014891439446973666; -9.85304886924253e-5 -1.3426602311527778e-5 -0.0003835232730023135; 5.602341118698953e-5 0.0001880036072309773 -0.0006281716766106916; 0.00018122159141822488 0.00030927740320518685 0.0001018819378548282; 9.629454558657402e-5 0.00016123996751249526 -0.00017437142981505945; -0.00012885310087460235 0.00012253124744784178 -0.0001268114277722781; 0.0006014936861673025 0.0006988495319844413 -0.000446181986860041; -0.0003317729364954457 0.0008610760201880722 0.00045461438515241104; 0.0002603128653303449 0.0006148525916535956 -0.0001437275203020101] %
|
||||
|
||||
Mass Used: 86.29455898384276 kg
|
||||
Launch C3: 96.3633343335804 km²/s²
|
||||
||V∞_in||: 1.2730468056840107e-5 km/s
|
||||
22
archive/ES_0.5558224886874478
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5558224886874478---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-14T23:54:28.525
|
||||
Launch V∞: [8.145087344616607, -5.6662314525547375, 0.16493094089055843] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [5.9367104147365403e-5, 4.8730360644439784e-5, 0.003145934483615344] km/s
|
||||
V∞_out: [-0.002776269848909524, -0.0009653862811910221, 0.0011239259333138203] km/s
|
||||
time of flight: 1.8749577787493294e8 seconds
|
||||
arrival date: 2030-04-24T02:04:05.525
|
||||
thrust profile: [0.1821993945438948 -0.0013631485982507586 -0.062188082882081594; 0.06155488770018268 0.03373818926367287 -0.07381192082647672; 0.055309765667404066 0.04719652683531835 -0.11759484451663701; 0.026038131174086047 0.029379113849091566 -0.08364320573355498; 0.022595436497182136 0.029956681404161033 -0.09658388251120247; 0.02470275525312149 0.0430988355309665 -0.14207007999096813; 0.010827262712412224 0.018390342920860427 -0.07097463884429948; 0.00875532657762532 0.01796682364984792 -0.0717923864930178; 0.0024836625650917917 0.004959870337903752 -0.022261877516037677; 0.0021411689330728535 0.004837123252528673 -0.022278748740835415; 0.0001663714690442312 0.00026262274430156245 -0.0015855030381359092; 4.403396740945333e-5 0.0002216138020192659 -0.001114785770396187; 0.00014639728872106348 0.00038526343831065714 -0.0024171809464598295; 0.0004986791055819131 -6.42503190641782e-5 -0.0005868243646974211; -5.389137094538407e-5 0.0010913791581246219 -0.0018423804824721113; 0.00013191521534491798 0.0004661208244784152 -0.0015385708622525952; -0.00047700244518037284 0.00025406105242428267 -0.0008935614130410638; 9.71062850629971e-5 -0.0005652859915543438 -0.0001187656591950957; -0.0016289619577609972 0.0004241308900837115 -0.00292004875705; -0.0012074844002367266 0.0005798686307722407 0.002719243510055672] %
|
||||
|
||||
Mass Used: 74.01723464842189 kg
|
||||
Launch C3: 98.47582894061723 km²/s²
|
||||
||V∞_in||: 0.0031468719192721396 km/s
|
||||
22
archive/ES_0.5558472505548713
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5558472505548713---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-14T18:16:40.858
|
||||
Launch V∞: [8.020180222127914, -5.691590916263975, 0.20675721586302248] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [-3.382218630453822e-5, -3.120871769234988e-5, 3.069687137628679e-5] km/s
|
||||
V∞_out: [-7.839920172447044e-6, -5.6989678678280376e-5, 2.735496097299929e-6] km/s
|
||||
time of flight: 1.8749577785753152e8 seconds
|
||||
arrival date: 2030-04-23T20:26:17.858
|
||||
thrust profile: [0.34397332976981154 0.0019211086043523901 -0.1103007434085456; 0.03571069754629575 0.020356200595922438 -0.04085081866609469; 0.03200885481060013 0.029341661430218265 -0.06612625343035164; 0.03950983503425282 0.04789285610425227 -0.12053667359073973; 0.04016880692530358 0.05952065499594405 -0.1639035370673269; 0.021250394462809602 0.0368045310211113 -0.1122121732957696; 0.016518228898727245 0.03280018690991797 -0.10764831048231813; 0.004215834930408646 0.009162092268123402 -0.03277710819320587; 0.0008073122802082747 0.0023318159176960044 -0.007903723016192054; 0.001409980353398891 0.002700844883547664 -0.00874442461005192; 9.533975278373994e-5 -0.0011954719260895883 -0.0020415622386658547; -0.0008676221505528904 -0.0006095180246605739 -0.0015822111759879734; -0.00015129546579974043 -0.0005662361412312537 -0.0016584937869259728; 0.0015362115192581556 -0.00020190711922243073 -0.0006597526367618477; 0.0012586546184986695 0.00134936604139315 -0.002215507211306132; -5.4933173473768835e-5 0.0006124746382959935 -0.002220402869587243; 0.000248654535235742 -0.0004993183743947807 -0.004208702729329133; -0.002003849507640907 -0.0020632617955001096 -0.0039084560839903705; -0.001956170593537257 -0.0005413529933416728 -0.0030028792644693483; -0.0017721652231622361 -0.0001376039351070372 -0.00040273531230205605] %
|
||||
|
||||
Mass Used: 84.05368773172268 kg
|
||||
Launch C3: 96.76024649982179 km²/s²
|
||||
||V∞_in||: 5.531927565245211e-5 km/s
|
||||
22
archive/ES_0.5558533611237318
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5558533611237318---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-14T17:03:16.528
|
||||
Launch V∞: [8.06850332079006, -5.665661254292966, 0.16779196569355997] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [-1.1412983953857728e-5, 0.00026462375915336475, 4.662268940587834e-6] km/s
|
||||
V∞_out: [0.00025609049237426706, -3.840562420470978e-5, 5.5895068284245824e-5] km/s
|
||||
time of flight: 1.8749577787493658e8 seconds
|
||||
arrival date: 2030-04-23T19:12:53.528
|
||||
thrust profile: [0.2879444151060303 -0.0032769099727066897 -0.09518863084849954; 0.056111400619534034 0.030923793956691526 -0.06594970344083223; 0.04269376209902795 0.036674028395639435 -0.08984553707155178; 0.050502627129324816 0.05696895048537511 -0.15680529977596813; 0.027928103604976745 0.03767267671133755 -0.11509610760991872; 0.017376446035021677 0.02631384642025439 -0.08953117211467436; 0.01248684645883106 0.023326248304538836 -0.08370693572956045; 0.003280702289041826 0.006223618897104122 -0.0295749332692172; 0.0019037768824084992 0.0040702658780207256 -0.018410000949822602; 0.000922524644747056 0.0020770697469395865 -0.010977767708480605; 0.0010429375350594734 0.002914841776064981 -0.015177405498180483; 0.0003537499932884955 0.0009101101778355857 -0.0041892756669427746; 0.000967335997969096 0.002460335295015552 -0.013385888495663535; 0.00028186841488487754 0.0008509651947054618 -0.0046533703124217556; 0.0007182624812921339 0.0008198796909274933 -0.0014994399709984977; 0.00028118878779284976 5.9385975795101474e-5 -0.0007068045823105662; 0.0007259756114810482 0.0007491114555815853 -0.0007497066843321215; -0.0001598865576742702 -0.000516621021246607 -0.0007915945292954795; 0.0007526444827450972 0.00026007121398408475 -0.0004884519648876557; 0.00199177897272931 -1.9999228634536795e-5 -0.0010394116855884233] %
|
||||
|
||||
Mass Used: 81.32865297082344 kg
|
||||
Launch C3: 97.22861742974807 km²/s²
|
||||
||V∞_in||: 0.0002649107903858644 km/s
|
||||
22
archive/ES_0.5558662372895594
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5558662372895594---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-15T05:44:11.020
|
||||
Launch V∞: [8.139803167680254, -5.647315242872821, 0.15738329700479445] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [-0.016631203558507637, 0.10220769452895039, 0.1066376381916789] km/s
|
||||
V∞_out: [-0.02558744762007931, 0.02319501815077483, -0.14455664775647756] km/s
|
||||
time of flight: 1.8749577787516823e8 seconds
|
||||
arrival date: 2030-04-24T07:53:48.020
|
||||
thrust profile: [0.2412491490531724 -0.0075435708360372545 -0.08696910011384751; 0.025358972834204803 0.012681760164543929 -0.033362581146555055; 0.0491675035584243 0.037898367149471826 -0.11011123911971735; 0.034761469088207 0.03393001069771068 -0.11395322206213486; 0.02877504164106272 0.032905220949458365 -0.12448552493786565; 0.02597432034420042 0.033565966041392385 -0.1399317638039783; 0.015316436989942435 0.02157759060619915 -0.09926973307474879; 0.005115558445724777 0.007963819520976382 -0.041488742403563886; 0.0011703918745264534 0.0019490370220689147 -0.010656599371909783; 0.001065638256009031 0.0009347430282915833 -0.008334405585172372; 0.0004373664945973918 0.0007342543411028775 -0.0035260864822668474; 0.00044598933615717007 0.001055043566326496 -0.001739393971164116; 0.00010611527132477588 0.0003757715991527618 0.000535072055176574; -9.790043793468507e-5 1.7093336149475233e-5 0.0004061769557542628; 0.00143390439412798 0.0005842142186828458 0.0016107682429857407; -0.000501502132164686 -0.0006540398062925176 0.0016923685271037713; -0.0026708940402657643 -0.0007461704232461983 0.0017946241364393137; -0.0008577638507745552 -0.001801082441750256 0.001369975426384974; 0.0007874515174102044 -0.001659216035796467 0.001191550306468037; 0.00271791041746247 -0.002136020899016181 -0.00036446217710833415] %
|
||||
|
||||
Mass Used: 75.83282521951833 kg
|
||||
Launch C3: 98.17333456313732 km²/s²
|
||||
||V∞_in||: 0.14864250950460695 km/s
|
||||
22
archive/ES_0.5558687243860738
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5558687243860738---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-14T04:44:44.406
|
||||
Launch V∞: [7.926674977701113, -5.704295701074707, 0.18612421009155877] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [-4.267040665413368e-10, 1.479066662287573e-9, -1.6399911979666534e-9] km/s
|
||||
V∞_out: [1.0817865429485196e-9, 2.1201569902862085e-9, 5.45134206289995e-11] km/s
|
||||
time of flight: 1.8696668599230942e8 seconds
|
||||
arrival date: 2030-04-17T03:56:09.406
|
||||
thrust profile: [0.41070806098542656 -0.008787243861247296 -0.12842175329010364; 0.1050983721593386 0.05482007971439309 -0.1151227079934063; 0.047489037678421796 0.04004617616998803 -0.09435952858893684; 0.024118304218830853 0.027298630096615345 -0.07331617603572899; 0.03332830151352836 0.04318034811654563 -0.12845753288179196; 0.0224471018473126 0.03536855993795905 -0.11206153554862952; 0.013863252896323904 0.028595534434234866 -0.09142079495876052; 0.0063894129470417746 0.012958688182379718 -0.04836183136475473; 0.0015196675707367946 0.002115234339886667 -0.00889135073026112; 0.000882564864626453 0.0022296862624698443 -0.009532497920043634; 0.00020505950604224126 0.000791393167795662 -0.0038024885840200005; -2.9277205689760225e-5 -7.923410806971189e-5 -0.0022771331454883104; -0.0006133391353344056 0.0005498496943153982 -0.00252758957448163; 0.00015738844184753708 0.0011873677091615027 -0.00361278984725187; 7.574085962876566e-6 0.0005895940058300447 -0.00204990573982413; -0.0005471488810656964 0.0003339056838708725 0.0006812693995493719; 0.0004495756325669218 0.0008664988009671715 -0.00024822004333460213; 0.0008356148738293636 -0.0012464050318468027 -0.001502825834394564; 4.594851882598074e-5 4.346039730665198e-5 -0.00017049846874473491; -7.192850005651835e-5 -0.0003729149276862026 -0.00020869961771174307] %
|
||||
|
||||
Mass Used: 91.9796325479515 kg
|
||||
Launch C3: 95.40580786899451 km²/s²
|
||||
||V∞_in||: 2.2492855935388716e-9 km/s
|
||||
22
archive/ES_0.5558779781677604
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5558779781677604---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-15T08:10:09.677
|
||||
Launch V∞: [7.894381291534464, -5.785139007377959, -0.08494684631296423] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [-1.9034379560346155e-9, 2.302025376630676e-9, 9.233393374906011e-10] km/s
|
||||
V∞_out: [2.508998396217692e-9, -2.308370756981814e-9, -1.8870685581830936e-9] km/s
|
||||
time of flight: 1.8749577787470794e8 seconds
|
||||
arrival date: 2030-04-24T10:19:46.677
|
||||
thrust profile: [0.3795819420374527 -0.003768633453468938 -0.1239326663584129; 0.09794470904025773 0.05578611794694805 -0.11743536837114588; 0.06504884963741392 0.05744204155321652 -0.1393410922487926; 0.027549147915339748 0.03144574045624916 -0.09023581588392661; 0.02843485432910916 0.03967245820343552 -0.12453309035323756; 0.01434010947560126 0.02322679269369038 -0.08178498720083793; 0.01057921776971638 0.019018700672330743 -0.07394958555043603; 0.004791032285740364 0.00972817550556817 -0.041161520238384854; 0.001423368274942205 0.004597516902262278 -0.018419472303710577; 0.0010348087333635588 0.0026947177146075772 -0.011409050605615628; 5.150679715794969e-5 0.00016032361211856425 -0.0006044108486849174; 0.00020403454557339372 0.0005272748954227537 -0.0026084863602975046; 3.084653317123268e-5 -5.281500999293916e-5 -0.00019017181288307898; -0.00011666855441256528 -7.987156532713148e-5 -0.0003686507106282742; 0.00023745646356933872 0.00018793775512487935 -0.00023735984487069752; 1.2671917395674077e-5 -7.244969914968518e-6 -0.00018704249470194272; -9.849995183951334e-5 -3.900843859143215e-5 1.7210650528979242e-5; 9.357834425714433e-5 0.00023348563805860174 8.355049469364135e-5; -0.00023633066851157567 9.058746275186138e-5 0.00020906591152564878; 0.00014150045409054975 0.00026982721645029464 -0.00012436396049234023] %
|
||||
|
||||
Mass Used: 89.71252707688927 kg
|
||||
Launch C3: 95.79630527751392 km²/s²
|
||||
||V∞_in||: 3.1264920309001944e-9 km/s
|
||||
22
archive/ES_0.5559128041821125
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5559128041821125---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-15T08:14:42.991
|
||||
Launch V∞: [7.866779426893698, -5.752572268964739, 0.1606977487911105] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [1.5378864130849763e-7, 9.510877930514063e-7, -2.2789178909471312e-5] km/s
|
||||
V∞_out: [-9.56708492923167e-7, 2.2781984183249892e-5, -2.7450486135648703e-7] km/s
|
||||
time of flight: 1.8749577787769815e8 seconds
|
||||
arrival date: 2030-04-24T10:24:19.991
|
||||
thrust profile: [0.49396114761661103 -0.0078125974697869 -0.16236485369121081; 0.05758971629702417 0.02946467299117961 -0.07080284190262136; 0.039999863532085074 0.03237501568425605 -0.08844071540389459; 0.03883900656247109 0.040086274856215603 -0.1252504154874446; 0.03480336417898244 0.04306180378055577 -0.14962433154364452; 0.016438242231518248 0.023045497470434155 -0.08963878147683864; 0.013567856729339283 0.021258593539582437 -0.08984742550691868; 0.003427296949281673 0.005669910290559113 -0.026280883826344588; 0.0011385696824643288 0.002106972691260799 -0.010234048341935321; 0.0007988372538301461 -0.0003610677249334009 -0.002008719135664823; 0.0008669085246602328 0.0009496156917026651 -0.0034578577157030783; -0.00011560835650556488 0.00021091875123499992 -0.0008096808214678602; 0.0010719971133464862 0.0010273816009384125 -0.0020109467302602477; 0.0013017474524907244 0.0015761826496794532 -0.0024755448736099514; 0.000529278404990742 -0.00013970788348503815 -0.003159726912437057; 0.000464366846193499 0.0009515824620475557 -0.0025551226987178947; 0.0007408115557011497 -0.0003502607794663498 0.0012445939403221298; -0.0010785848917700405 0.0010126033272391233 -0.0003719420652615623; 2.3394232892742024e-5 0.0003407428464003145 -0.0010848168493393505; -0.00011114850434629472 0.0008863352816601983 -0.0013988737116514469] %
|
||||
|
||||
Mass Used: 94.37417971855939 kg
|
||||
Launch C3: 95.0041300275266 km²/s²
|
||||
||V∞_in||: 2.2809535161948808e-5 km/s
|
||||
22
archive/ES_0.5559161153091994
Normal file
@@ -0,0 +1,22 @@
|
||||
archive/ES_0.5559161153091994---------------------------
|
||||
|
||||
Spacecraft: mySat
|
||||
dry_mass: 200.0 kg
|
||||
specific impulse: 3200.0 kg/s
|
||||
max_thrust: 0.00025 kN
|
||||
num_thrusters: 1
|
||||
duty_cycle: 1.0
|
||||
Launch Mass: 3500.0 kg
|
||||
Launch Date: 2024-05-14T22:59:25.220
|
||||
Launch V∞: [7.902723530690704, -5.792477101021152, 0.1737027323535227] km/s
|
||||
Phase 1:
|
||||
Planet: Saturn
|
||||
V∞_in: [-8.034636198766216e-6, 0.0001907281087354548, 3.167142492142628e-6] km/s
|
||||
V∞_out: [0.00018481747137806098, -2.7201160346527105e-5, 3.908934538923173e-5] km/s
|
||||
time of flight: 1.8749577787493783e8 seconds
|
||||
arrival date: 2030-04-24T01:09:02.220
|
||||
thrust profile: [0.3620603035699699 0.012159716002029659 -0.10953393936396177; 0.07170183015250459 0.044084045654540896 -0.07812291295302695; 0.04923935872859461 0.049179750328895176 -0.09719646613221114; 0.048535758756893754 0.06485744175314566 -0.14225317021866515; 0.033218282523832465 0.055075959769179 -0.13361715337862104; 0.014293842185512976 0.028195630940955806 -0.07652366322881445; 0.009381512368472284 0.021467421967629862 -0.06295310538846842; 0.006958176455256972 0.01840877546629484 -0.05757115538475504; 0.0007250001900832797 0.0020864928070601853 -0.007224342686006196; 0.002277093475859385 0.006662324032877546 -0.021197251161165477; 0.0006013625066908898 0.0023591314556498486 -0.008634526017830496; 0.0004563211966331974 0.00046385842723694275 -0.0016054051345550159; 4.327730777362032e-5 0.00037731618149751975 -0.0014634664029315931; 8.267248029622195e-5 9.417518517602528e-5 -0.0015402683930081295; 2.2894819858776736e-5 0.0004011241181129774 -0.0011518083629152116; -3.772530601714994e-5 -3.006590994584059e-5 -0.00046134586183175824; -0.00052409624316835 0.00015814867361838453 -0.0002361334461810562; 3.451441574399709e-5 3.5704795107332522e-6 -0.0003387605449442791; -0.0010367677148064383 0.0006457575305781564 -0.0003675513769867823; 0.0002867443419824131 -1.2678068253483936e-6 0.00010788365830646774] %
|
||||
|
||||
Mass Used: 88.35878481631744 kg
|
||||
Launch C3: 96.03600280761403 km²/s²
|
||||
||V∞_in||: 0.0001909235387065082 km/s
|
||||