@testset "Find Closest" begin using JuMP using Thesis: treat_inputs # Initial Setup sc = Sc("test") a = rand(15000:1.:40000) e = rand(0.01:0.01:0.5) i = rand(0.01:0.01:π/6) T = 2π*√(a^3/μs["Earth"]) prop_time = 2T n = 30 # A simple orbit raising start = oe_to_xyz([ a, e, i, 0., 0., 0. ], μs["Earth"]) ΔVs = repeat([0.6, 0., 0.]', outer=(n,1)) final = prop(ΔVs, start, sc, μs["Earth"], prop_time)[3] new_T = 2π*√(xyz_to_oe(final, μs["Earth"])[1]^3/μs["Earth"]) # This should be close enough to 0.6 Tr, TΘ, Th = conv_T(repeat([0.6], n), repeat([0.], n), repeat([0.], n), start, sc.mass, sc, prop_time, μs["Earth"]) result, solution = nlp_solve(start, final, sc, μs["Earth"], 0.0, prop_time, Tr, TΘ, Th) # Test and plot @test JuMP.termination_status(result) == MOI.OPTIMAL path1 = prop(zeros((100,3)), start, sc, μs["Earth"], T)[1] path2, mass, calc_final = prop(treat_inputs(JuMP.value.(solution)), start, sc, μs["Earth"], prop_time) path3 = prop(zeros((100,3)), calc_final, sc, μs["Earth"], new_T)[1] path4 = prop(zeros((100,3)), final, sc, μs["Earth"], new_T)[1] savefig(plot_orbits([path1, path2, path3, path4], labels=["initial", "transit", "after transit", "final"], colors=["#FFFFFF","#FF4444","#44FF44","#4444FF"]), "../plots/find_closest_test.html") # if termination_status(result) == :OPTIMAL # @test norm(calc_final - final) < 1e-4 # end end