@testset "Monotonic Basin Hopping" begin using Thesis: mbh # Initial Setup sc = Sc("test") a = rand(15000:1.:40000) e = rand(0.01:0.01:0.5) i = rand(0.01:0.01:π/6) T = 2π*√(a^3/μs["Earth"]) prop_time = 0.75T n = 10 # A simple orbit raising start = oe_to_xyz([ a, e, i, 0., 0., 0. ], μs["Earth"]) # T_craft = hcat(repeat([0.6], n), repeat([0.], n), repeat([0.], n)) Tx, Ty, Tz = conv_T(repeat([0.8], n), repeat([0.], n), repeat([0.], n), start, sc.mass, sc, prop_time, μs["Earth"]) nominal_path, normal_mass, final = prop(hcat(Tx, Ty, Tz), start, sc, μs["Earth"], prop_time) new_T = 2π*√(xyz_to_oe(final, μs["Earth"])[1]^3/μs["Earth"]) # Find the best solution best, archive = mbh(start, final, sc, μs["Earth"], 0.0, prop_time, n, num_iters=5, patience_level=50, verbose=true) # Test and plot @test converged(best) transit, best_masses, calc_final = prop(tanh.(best.zero), start, sc, μs["Earth"], prop_time) initial_path = prop(zeros((100,3)), start, sc, μs["Earth"], T)[1] after_transit = prop(zeros((100,3)), calc_final, sc, μs["Earth"], new_T)[1] final_path = prop(zeros((100,3)), final, sc, μs["Earth"], new_T)[1] savefig(plot_orbits([initial_path, nominal_path, final_path], labels=["initial", "nominal transit", "final"], colors=["#FF4444","#44FF44","#4444FF"]), "../plots/mbh_nominal.html") savefig(plot_orbits([initial_path, transit, after_transit, final_path], labels=["initial", "transit", "after transit", "final"], colors=["#FFFFFF", "#FF4444","#44FF44","#4444FF"]), "../plots/mbh_best.html") i = 0 best_mass = best_masses[end] nominal_mass = normal_mass[end] masses = [] for candidate in archive @test converged(candidate) path2, cand_ms, calc_final = prop(tanh.(candidate.zero), start, sc, μs["Earth"], prop_time) push!(masses, cand_ms[end]) @test norm(calc_final - final) < 1e-4 end @test best_mass == maximum(masses) # This won't always work since the test is reduced in fidelity, # but hopefully will usually work: @test (sc.mass - best_mass) < 1.1 * (sc.mass - nominal_mass) @show best_mass @show nominal_mass end