Files
thesis/julia/test/inner_loop/nlp_solver.jl
2021-10-12 21:49:46 -06:00

76 lines
3.6 KiB
Julia

@testset "NLP Solver" begin
using PlotlyJS: savefig
println("Testing NLP solver")
# Test the optimizer for a one-phase mission
# The lambert's solver said this should be pretty valid
launch_window = DateTime(1992,11,1), DateTime(1992,12,1)
latest_arrival = DateTime(1993,6,1)
leave, arrive = DateTime(1992,11,19), DateTime(1993,4,1)
test_leave = DateTime(1992,11,12)
earth_state = state(Earth, leave)
venus_state = state(Venus, arrive)
v∞_out, v∞_in, tof = Thesis.lamberts(Earth, Venus, leave, arrive)
# We can get the thrust profile and tof pretty wrong and still be ok
phase = Phase(Venus, 1.1v∞_in, v∞_in, 0.9*tof, 0.1*ones(20,3))
guess = Mission_Guess(bepi, 3_600., test_leave, 0.9*v∞_out, [phase])
m = solve_mission(guess, launch_window, latest_arrival, verbose=true)
@test typeof(m) == Mission
# Now we can plot the results to check visually
p = plot(m, title="NLP Test Solution")
savefig(p,"../plots/nlp_test_1_phase.html")
store(m, "missions/nlp_1_phase")
# Now we can look at a slightly more complicated trajectory
flybys = [Earth, Venus, Mars]
launch_window = DateTime(2021,10,1), DateTime(2021,12,1)
latest_arrival = DateTime(2023,1,1)
dates = [DateTime(2021,11,1), DateTime(2022,3,27), DateTime(2022,8,28)]
phases = Vector{Phase}()
launch_v∞, _, tof1 = Thesis.lamberts(flybys[1], flybys[2], dates[1], dates[2])
for i in 1:length(dates)-2
v∞_out1, v∞_in1, tof1 = Thesis.lamberts(flybys[i], flybys[i+1], dates[i], dates[i+1])
v∞_out2, v∞_in2, tof2 = Thesis.lamberts(flybys[i+1], flybys[i+2], dates[i+1], dates[i+2])
push!(phases, Phase(flybys[i+1], v∞_in1, v∞_out2, tof1, 0.01*ones(20,3)))
end
v∞_out, v∞_in, tof = Thesis.lamberts(flybys[end-1], flybys[end], dates[end-1], dates[end])
push!(phases, Phase(flybys[end], v∞_in, v∞_in, tof, 0.01*ones(20,3)))
guess = Mission_Guess(bepi, 3_600., dates[1], launch_v∞, phases)
m = solve_mission(guess, launch_window, latest_arrival, verbose=true)
@test typeof(m) == Mission
p = plot(m, title="NLP Test Solution (2 Phases)")
savefig(p,"../plots/nlp_test_2_phase.html")
store(m, "missions/nlp_2_phase")
# Here is the final, most complicated, trajectory to test
# Ignoring for now as the initial guess makes the test take too long to converge with mbh settings
# flybys = [Earth, Venus, Earth, Mars, Earth, Jupiter]
# launch_window = DateTime(2023,1,1), DateTime(2024,1,1)
# latest_arrival = DateTime(2031,1,1)
# dates = [DateTime(2023,5,23),
# DateTime(2023,10,21),
# DateTime(2024,8,24),
# DateTime(2025,2,13),
# DateTime(2026,11,22),
# DateTime(2032,1,1)]
# phases = Vector{Phase}()
# launch_v∞, _, tof1 = Thesis.lamberts(flybys[1], flybys[2], dates[1], dates[2])
# for i in 1:length(dates)-2
# v∞_out1, v∞_in1, tof1 = Thesis.lamberts(flybys[i], flybys[i+1], dates[i], dates[i+1])
# v∞_out2, v∞_in2, tof2 = Thesis.lamberts(flybys[i+1], flybys[i+2], dates[i+1], dates[i+2])
# push!(phases, Phase(flybys[i+1], 1.02v∞_in1, 0.98v∞_out2, 1.02tof1, 0.02*ones(20,3)))
# end
# v∞_out, v∞_in, tof = Thesis.lamberts(flybys[end-1], flybys[end], dates[end-1], dates[end])
# push!(phases, Phase(flybys[end], v∞_in, v∞_in, tof, 0.01*ones(20,3)))
# guess = Mission_Guess(bepi, 3_600., dates[1], launch_v∞, phases)
# m = solve_mission(guess, launch_window, latest_arrival, verbose=true)
# @test typeof(m) == Mission
# p = plot(m, title="NLP Test Solution (5 Phases)")
# savefig(p,"../plots/nlp_test_5_phase.html")
# store(m, "missions/nlp_5_phase")
end