Files
differential-equations/src/controller.rs
2025-10-24 14:24:02 -04:00

563 lines
19 KiB
Rust

#[derive(Debug, Clone, Copy, PartialEq)]
pub enum TryStep {
Accepted(f64, f64),
NotYetAccepted(f64),
}
impl TryStep {
pub fn extract(&self) -> f64 {
match self {
TryStep::Accepted(h, _) => *h,
TryStep::NotYetAccepted(h) => *h,
}
}
pub fn is_accepted(&self) -> bool {
matches!(self, TryStep::Accepted(_, _))
}
pub fn reset(&mut self) -> Result<TryStep, &str> {
match self {
TryStep::Accepted(_, h) => Ok(TryStep::NotYetAccepted(*h)),
TryStep::NotYetAccepted(_) => Err("Cannot reset a NotYetAccepted TryStep"),
}
}
}
pub trait Controller<const D: usize> {
fn determine_step(&mut self, h: f64, err: f64) -> TryStep;
}
#[derive(Debug, Clone, Copy)]
pub struct PIController {
pub alpha: f64,
pub beta: f64,
pub factor_c1: f64,
pub factor_c2: f64,
pub factor_old: f64,
pub h_max: f64,
pub safety_factor: f64,
pub next_step_guess: TryStep,
}
impl<const D: usize> Controller<D> for PIController {
/// Determines if the previously run step size and error were valid or not. Either way, it also
/// returns what the next step size should be
fn determine_step(&mut self, prev_step: f64, err: f64) -> TryStep {
let factor_11 = err.powf(self.alpha);
let factor = self.factor_c2.max(
self.factor_c1
.min(factor_11 * self.factor_old.powf(-self.beta) / self.safety_factor),
);
if err <= 1.0 {
let mut h = prev_step / factor;
// Accept the stepsize and provide what the next step size should be
self.factor_old = err.max(1.0e-4);
if h.abs() > self.h_max {
// If the step goes past the maximum allowed, though, we shrink it
h = self.h_max.copysign(h);
}
TryStep::Accepted(prev_step, h)
} else {
// Reject the stepsize and propose a smaller one for the current step
TryStep::NotYetAccepted(prev_step / (self.factor_c1.min(factor_11 / self.safety_factor)))
}
}
}
impl PIController {
pub fn new(
alpha: f64,
beta: f64,
max_factor: f64,
min_factor: f64,
h_max: f64,
safety_factor: f64,
initial_h: f64,
) -> Self {
Self {
alpha,
beta,
factor_c1: 1.0 / min_factor,
factor_c2: 1.0 / max_factor,
factor_old: 1.0e-4,
h_max: h_max.abs(),
safety_factor,
next_step_guess: TryStep::NotYetAccepted(initial_h),
}
}
}
impl Default for PIController {
fn default() -> Self {
Self::new(0.17, 0.04, 10.0, 0.2, 100000.0, 0.9, 1e-4)
}
}
/// PID (Proportional-Integral-Derivative) step size controller
///
/// The PID controller is an advanced adaptive time-stepping controller that provides
/// better stability than the PI controller, especially for difficult or oscillatory problems.
///
/// # Mathematical Formulation
///
/// The PID controller determines the next step size based on error estimates from the
/// current and previous two steps:
///
/// ```text
/// h_{n+1} = h_n * safety * (ε_n)^(-β₁) * (ε_{n-1})^(-β₂) * (h_n/h_{n-1})^(-β₃)
/// ```
///
/// Where:
/// - ε_n = normalized error estimate at current step
/// - ε_{n-1} = normalized error estimate at previous step
/// - β₁ = proportional coefficient (controls reaction to current error)
/// - β₂ = integral coefficient (controls reaction to error history)
/// - β₃ = derivative coefficient (controls reaction to error rate of change)
///
/// # When to Use
///
/// Prefer PID over PI when:
/// - Problem exhibits step size oscillation with PI controller
/// - Working with stiff or near-stiff problems
/// - Need smoother step size evolution
/// - Standard in production solvers (MATLAB, Sundials)
///
/// # Example
///
/// ```ignore
/// use ordinary_diffeq::prelude::*;
///
/// // Default PID controller (conservative coefficients)
/// let controller = PIDController::default();
///
/// // Custom PID controller
/// let controller = PIDController::new(0.49, 0.34, 0.10, 10.0, 0.2, 100.0, 0.9, 1e-4);
///
/// // PID tuned for specific method order (Gustafsson coefficients)
/// let controller = PIDController::for_order(5);
/// ```
#[derive(Debug, Clone, Copy)]
pub struct PIDController {
// PID Coefficients
pub beta1: f64, // Proportional: reaction to current error
pub beta2: f64, // Integral: reaction to error history
pub beta3: f64, // Derivative: reaction to error rate of change
// Constraints
pub factor_c1: f64, // 1/min_factor (maximum step decrease)
pub factor_c2: f64, // 1/max_factor (maximum step increase)
pub h_max: f64, // Maximum allowed step size
pub safety_factor: f64, // Safety factor (typically 0.9)
// Error history for PID control
pub err_old: f64, // ε_{n-1}: previous step error
pub err_older: f64, // ε_{n-2}: error two steps ago
pub h_old: f64, // h_{n-1}: previous step size
// Next step guess
pub next_step_guess: TryStep,
}
impl<const D: usize> Controller<D> for PIDController {
/// Determines if the previously run step was acceptable and computes the next step size
/// using PID control theory
fn determine_step(&mut self, h: f64, err: f64) -> TryStep {
// Compute PID control factor
// For first step or when history isn't available, fall back to simpler control
let factor = if self.err_old <= 0.0 {
// First step: use only proportional control
let factor_11 = err.powf(self.beta1);
self.factor_c2.max(
self.factor_c1.min(factor_11 / self.safety_factor)
)
} else if self.err_older <= 0.0 {
// Second step: use PI control (proportional + integral)
let factor_11 = err.powf(self.beta1);
let factor_12 = self.err_old.powf(-self.beta2);
self.factor_c2.max(
self.factor_c1.min(factor_11 * factor_12 / self.safety_factor)
)
} else {
// Full PID control (proportional + integral + derivative)
let factor_11 = err.powf(self.beta1);
let factor_12 = self.err_old.powf(-self.beta2);
// Derivative term uses ratio of consecutive step sizes
let factor_13 = if self.h_old > 0.0 {
(h / self.h_old).powf(-self.beta3)
} else {
1.0
};
self.factor_c2.max(
self.factor_c1.min(factor_11 * factor_12 * factor_13 / self.safety_factor)
)
};
if err <= 1.0 {
// Step accepted
let mut h_next = h / factor;
// Update error history for next step
self.err_older = self.err_old;
self.err_old = err.max(1.0e-4); // Prevent very small values
self.h_old = h;
// Apply maximum step size limit
if h_next.abs() > self.h_max {
h_next = self.h_max.copysign(h_next);
}
TryStep::Accepted(h, h_next)
} else {
// Step rejected - propose smaller step
// Use only proportional control for rejection (more aggressive)
let factor_11 = err.powf(self.beta1);
let h_next = h / (self.factor_c1.min(factor_11 / self.safety_factor));
// Note: Don't update history on rejection
TryStep::NotYetAccepted(h_next)
}
}
}
impl PIDController {
/// Create a new PID controller with custom parameters
///
/// # Arguments
///
/// * `beta1` - Proportional coefficient (typically 0.3-0.5)
/// * `beta2` - Integral coefficient (typically 0.04-0.1)
/// * `beta3` - Derivative coefficient (typically 0.01-0.05)
/// * `max_factor` - Maximum step size increase factor (typically 10.0)
/// * `min_factor` - Maximum step size decrease factor (typically 0.2)
/// * `h_max` - Maximum allowed step size
/// * `safety_factor` - Safety factor (typically 0.9)
/// * `initial_h` - Initial step size guess
pub fn new(
beta1: f64,
beta2: f64,
beta3: f64,
max_factor: f64,
min_factor: f64,
h_max: f64,
safety_factor: f64,
initial_h: f64,
) -> Self {
Self {
beta1,
beta2,
beta3,
factor_c1: 1.0 / min_factor,
factor_c2: 1.0 / max_factor,
h_max: h_max.abs(),
safety_factor,
err_old: 0.0, // No history initially
err_older: 0.0, // No history initially
h_old: 0.0, // No history initially
next_step_guess: TryStep::NotYetAccepted(initial_h),
}
}
/// Create a PID controller with coefficients scaled for a specific method order
///
/// Uses the Gustafsson coefficients scaled by order:
/// - β₁ = 0.49 / (order + 1)
/// - β₂ = 0.34 / (order + 1)
/// - β₃ = 0.10 / (order + 1)
///
/// # Arguments
///
/// * `order` - Order of the integration method (e.g., 5 for DP5, 7 for Vern7)
pub fn for_order(order: usize) -> Self {
let k_plus_1 = (order + 1) as f64;
Self::new(
0.49 / k_plus_1, // beta1: proportional
0.34 / k_plus_1, // beta2: integral
0.10 / k_plus_1, // beta3: derivative
10.0, // max_factor
0.2, // min_factor
100000.0, // h_max
0.9, // safety_factor
1e-4, // initial_h
)
}
/// Reset the controller's error history
///
/// Useful when switching algorithms or restarting integration
pub fn reset(&mut self) {
self.err_old = 0.0;
self.err_older = 0.0;
self.h_old = 0.0;
}
}
impl Default for PIDController {
/// Default PID controller using conservative coefficients
///
/// Uses conservative PID coefficients that provide stable performance
/// across a wide range of problems:
/// - β₁ = 0.07 (proportional)
/// - β₂ = 0.04 (integral)
/// - β₃ = 0.01 (derivative)
///
/// These values are appropriate for typical ODE methods of order 5-7.
/// For method-specific tuning, use `PIDController::for_order(order)` instead.
fn default() -> Self {
Self::new(
0.07, // beta1 (proportional)
0.04, // beta2 (integral)
0.01, // beta3 (derivative)
10.0, // max_factor
0.2, // min_factor
100000.0, // h_max
0.9, // safety_factor
1e-4, // initial_h
)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_pi_controller_creation() {
let controller = PIController::new(0.17, 0.04, 10.0, 0.2, 10.0, 0.9, 1e-4);
assert!(controller.alpha == 0.17);
assert!(controller.beta == 0.04);
assert!(controller.factor_c1 == 1.0 / 0.2);
assert!(controller.factor_c2 == 1.0 / 10.0);
assert!(controller.factor_old == 1.0e-4);
assert!(controller.h_max == 10.0);
assert!(controller.safety_factor == 0.9);
assert!(controller.next_step_guess == TryStep::NotYetAccepted(1e-4));
}
#[test]
fn test_pid_controller_creation() {
let controller = PIDController::new(0.49, 0.34, 0.10, 10.0, 0.2, 10.0, 0.9, 1e-4);
assert_eq!(controller.beta1, 0.49);
assert_eq!(controller.beta2, 0.34);
assert_eq!(controller.beta3, 0.10);
assert_eq!(controller.factor_c1, 1.0 / 0.2);
assert_eq!(controller.factor_c2, 1.0 / 10.0);
assert_eq!(controller.h_max, 10.0);
assert_eq!(controller.safety_factor, 0.9);
assert_eq!(controller.err_old, 0.0);
assert_eq!(controller.err_older, 0.0);
assert_eq!(controller.h_old, 0.0);
}
#[test]
fn test_pid_for_order() {
let controller = PIDController::for_order(5);
// For order 5, k+1 = 6
assert!((controller.beta1 - 0.49 / 6.0).abs() < 1e-10);
assert!((controller.beta2 - 0.34 / 6.0).abs() < 1e-10);
assert!((controller.beta3 - 0.10 / 6.0).abs() < 1e-10);
}
#[test]
fn test_pid_default() {
let controller = PIDController::default();
// Default uses conservative PID coefficients
assert_eq!(controller.beta1, 0.07);
assert_eq!(controller.beta2, 0.04);
assert_eq!(controller.beta3, 0.01); // True PID with derivative term
}
#[test]
fn test_pid_reset() {
let mut controller = PIDController::default();
// Simulate some history
controller.err_old = 0.5;
controller.err_older = 0.3;
controller.h_old = 0.01;
controller.reset();
assert_eq!(controller.err_old, 0.0);
assert_eq!(controller.err_older, 0.0);
assert_eq!(controller.h_old, 0.0);
}
#[test]
fn test_pi_vs_pid_smooth_problem() {
// For smooth problems, PI and PID should perform similarly
// Test with exponential decay: y' = -y
let mut pi = PIController::default();
let mut pid = PIDController::default();
// Simulate a sequence of small errors (smooth problem)
let errors = vec![0.8, 0.6, 0.5, 0.45, 0.4, 0.35, 0.3];
let h = 0.01;
let mut pi_steps = Vec::new();
let mut pid_steps = Vec::new();
for &err in &errors {
let mut pi_result = <PIController as Controller<1>>::determine_step(&mut pi, h, err);
let mut pid_result = <PIDController as Controller<1>>::determine_step(&mut pid, h, err);
if pi_result.is_accepted() {
pi_steps.push(pi_result.extract());
pi.next_step_guess = pi_result.reset().unwrap();
}
if pid_result.is_accepted() {
pid_steps.push(pid_result.extract());
pid.next_step_guess = pid_result.reset().unwrap();
}
}
// Both should accept all steps for this smooth sequence
assert_eq!(pi_steps.len(), errors.len());
assert_eq!(pid_steps.len(), errors.len());
// Step sizes should be reasonably similar (within 20%)
// PID may differ slightly due to derivative term
for (pi_h, pid_h) in pi_steps.iter().zip(pid_steps.iter()) {
let relative_diff = ((pi_h - pid_h) / pi_h).abs();
assert!(
relative_diff < 0.2,
"Step sizes differ by more than 20%: PI={}, PID={}",
pi_h,
pid_h
);
}
}
#[test]
fn test_pid_bootstrap() {
// Test that PID progressively uses P → PI → PID as history builds
let mut pid = PIDController::new(0.49, 0.34, 0.10, 10.0, 0.2, 100.0, 0.9, 0.01);
let h = 0.01;
let err1 = 0.5;
let err2 = 0.4;
let err3 = 0.3;
// First step: should use only proportional (beta1)
assert_eq!(pid.err_old, 0.0);
assert_eq!(pid.err_older, 0.0);
let step1 = <PIDController as Controller<1>>::determine_step(&mut pid, h, err1);
assert!(step1.is_accepted());
// After first step, err_old is updated but err_older is still 0
assert!(pid.err_old > 0.0);
assert_eq!(pid.err_older, 0.0);
// Second step: should use PI (beta1 and beta2)
let step2 = <PIDController as Controller<1>>::determine_step(&mut pid, h, err2);
assert!(step2.is_accepted());
// After second step, both err_old and err_older should be set
assert!(pid.err_old > 0.0);
assert!(pid.err_older > 0.0);
assert!(pid.h_old > 0.0);
// Third step: should use full PID (beta1, beta2, and beta3)
let step3 = <PIDController as Controller<1>>::determine_step(&mut pid, h, err3);
assert!(step3.is_accepted());
}
#[test]
fn test_pid_step_rejection() {
// Test that error history is NOT updated after rejection
let mut pid = PIDController::default();
let h = 0.01;
// First, accept a step to build history
let err_good = 0.5;
let step1 = <PIDController as Controller<1>>::determine_step(&mut pid, h, err_good);
assert!(step1.is_accepted());
let err_old_before = pid.err_old;
let err_older_before = pid.err_older;
let h_old_before = pid.h_old;
// Now reject a step with large error
let err_bad = 2.0;
let step2 = <PIDController as Controller<1>>::determine_step(&mut pid, h, err_bad);
assert!(!step2.is_accepted());
// History should NOT have changed after rejection
assert_eq!(pid.err_old, err_old_before);
assert_eq!(pid.err_older, err_older_before);
assert_eq!(pid.h_old, h_old_before);
}
#[test]
fn test_pid_vs_pi_oscillatory() {
// Test on oscillatory error pattern (simulating difficult problem)
// True PID (with derivative term) should provide smoother step size evolution
let mut pi = PIController::default();
// Use actual PID with non-zero beta3 (Gustafsson coefficients for order 5)
let mut pid = PIDController::for_order(5);
// Simulate oscillatory error pattern
let errors = vec![0.8, 0.3, 0.9, 0.2, 0.85, 0.25, 0.8, 0.3];
let h = 0.01;
let mut pi_ratios = Vec::new();
let mut pid_ratios = Vec::new();
let mut pi_h_prev = h;
let mut pid_h_prev = h;
for &err in &errors {
let mut pi_result = <PIController as Controller<1>>::determine_step(&mut pi, h, err);
let mut pid_result = <PIDController as Controller<1>>::determine_step(&mut pid, h, err);
if pi_result.is_accepted() {
let pi_h_next = pi_result.reset().unwrap().extract();
pi_ratios.push((pi_h_next / pi_h_prev).ln().abs());
pi_h_prev = pi_h_next;
pi.next_step_guess = TryStep::NotYetAccepted(pi_h_next);
}
if pid_result.is_accepted() {
let pid_h_next = pid_result.reset().unwrap().extract();
pid_ratios.push((pid_h_next / pid_h_prev).ln().abs());
pid_h_prev = pid_h_next;
pid.next_step_guess = TryStep::NotYetAccepted(pid_h_next);
}
}
// Compute standard deviation of log step size ratios
let pi_mean: f64 = pi_ratios.iter().sum::<f64>() / pi_ratios.len() as f64;
let pi_variance: f64 = pi_ratios
.iter()
.map(|r| (r - pi_mean).powi(2))
.sum::<f64>()
/ pi_ratios.len() as f64;
let pi_std = pi_variance.sqrt();
let pid_mean: f64 = pid_ratios.iter().sum::<f64>() / pid_ratios.len() as f64;
let pid_variance: f64 = pid_ratios
.iter()
.map(|r| (r - pid_mean).powi(2))
.sum::<f64>()
/ pid_ratios.len() as f64;
let pid_std = pid_variance.sqrt();
// With true PID (non-zero beta3), we expect similar or better stability
// Allow some tolerance since this is a simple synthetic test
assert!(
pid_std <= pi_std * 1.1,
"PID should not be significantly worse than PI: PI_std={:.3}, PID_std={:.3}",
pi_std,
pid_std
);
}
}