Files
differential-equations/benches/README.md
2025-10-24 10:32:32 -04:00

113 lines
3.3 KiB
Markdown

# Benchmarks
This directory contains performance benchmarks for the ODE solver library.
## Running Benchmarks
To run all benchmarks:
```bash
cargo bench
```
To run a specific benchmark file:
```bash
cargo bench --bench bs3_vs_dp5
cargo bench --bench simple_1d
cargo bench --bench orbit
```
## Benchmark Suites
### `bs3_vs_dp5.rs` - BS3 vs DP5 Comparison
Comprehensive performance comparison between the Bogacki-Shampine 3(2) method (BS3) and Dormand-Prince 4(5) method (DP5).
**Test Problems:**
1. **Exponential Decay** - Simple 1D problem: `y' = -0.5*y`
2. **Harmonic Oscillator** - 2D conservative system: `y'' + y = 0`
3. **Nonlinear Pendulum** - Nonlinear 2D system with trigonometric terms
4. **Orbital Mechanics** - 6D system with gravitational dynamics
5. **Interpolation** - Performance of dense output interpolation
6. **Tolerance Scaling** - How methods perform across tolerance ranges (1e-3 to 1e-7)
**Expected Results:**
- **BS3** should be faster for moderate tolerances (1e-3 to 1e-6) on simple problems
- Lower overhead: 4 stages vs 7 stages for DP5
- FSAL property: effective cost ~3 function evaluations per step
- **DP5** should be faster for tight tolerances (< 1e-7)
- Higher order allows larger steps
- Better for problems requiring high accuracy
- **Interpolation**: DP5 has more sophisticated interpolation, may be faster/more accurate
### `simple_1d.rs` - Simple 1D Problem
Basic benchmark for a simple 1D exponential decay problem using DP5.
### `orbit.rs` - Orbital Mechanics
6D orbital mechanics problem using DP5.
## Benchmark Results Interpretation
Criterion outputs timing statistics for each benchmark:
- **Time**: Mean execution time with confidence interval
- **Outliers**: Number of measurements significantly different from the mean
- **Plots**: Stored in `target/criterion/` (if gnuplot is available)
### Performance Comparison
When comparing BS3 vs DP5:
1. **For moderate accuracy (tol ~ 1e-5)**:
- BS3 typically uses ~1.5-2x the time per problem
- But this can vary by problem characteristics
2. **For high accuracy (tol ~ 1e-7)**:
- DP5 becomes more competitive or faster
- Higher order allows fewer steps
3. **Memory usage**:
- BS3: Stores 4 values for dense output [y0, y1, f0, f1]
- DP5: Stores 5 values for dense output [rcont1..rcont5]
- Difference is minimal for most problems
## Notes
- Benchmarks use `std::hint::black_box()` to prevent compiler optimizations
- Each benchmark runs multiple iterations to get statistically significant results
- Results may vary based on:
- System load
- CPU frequency scaling
- Compiler optimizations
- Problem characteristics (stiffness, nonlinearity, dimension)
## Adding New Benchmarks
To add a new benchmark:
1. Create a new file in `benches/` (e.g., `my_benchmark.rs`)
2. Add benchmark configuration to `Cargo.toml`:
```toml
[[bench]]
name = "my_benchmark"
harness = false
```
3. Use the Criterion framework:
```rust
use criterion::{criterion_group, criterion_main, Criterion};
use std::hint::black_box;
fn my_bench(c: &mut Criterion) {
c.bench_function("my_test", |b| {
b.iter(|| {
black_box({
// Code to benchmark
});
});
});
}
criterion_group!(benches, my_bench);
criterion_main!(benches);
```