I THINK that the single shooter is ok. I can always improve it later
This commit is contained in:
@@ -41,32 +41,24 @@ function xyz_to_oe(cart_vec::Vector,μ::Real)
|
||||
e = norm(e_xyz)
|
||||
if h_xyz[3]/h < 1.
|
||||
i = acos(h_xyz[3]/h) #rad
|
||||
elseif h_xyz[3]/h < 1.000001
|
||||
i = acos(1.)
|
||||
else
|
||||
error("bad i")
|
||||
i = acos(1.)
|
||||
end
|
||||
n_xyz = cross([0,0,1],h_xyz)
|
||||
if dot(n_xyz,[1,0,0])/norm(n_xyz) < 1.
|
||||
Ω = acos(dot(n_xyz,[1,0,0])/norm(n_xyz))
|
||||
elseif dot(n_xyz,[1,0,0])/norm(n_xyz) < 1.0001
|
||||
Ω = acos(1.)
|
||||
else
|
||||
error("bad Ω")
|
||||
Ω = acos(1.)
|
||||
end
|
||||
if dot(n_xyz,e_xyz)/(norm(n_xyz)*e) < 1.
|
||||
ω = acos(dot(n_xyz,e_xyz)/(norm(n_xyz)*e))
|
||||
elseif dot(n_xyz,e_xyz)/(norm(n_xyz)*e) < 1.0001
|
||||
ω = acos(1.)
|
||||
else
|
||||
error("bad ω: $(e_xyz)")
|
||||
ω = acos(1.)
|
||||
end
|
||||
if abs((dot(r_xyz,e_xyz))/(r*norm(e_xyz))) < 1.
|
||||
ν = acos((dot(r_xyz,e_xyz))/(r*norm(e_xyz)))
|
||||
elseif (dot(r_xyz,e_xyz))/(r*norm(e_xyz)) < 1.0001
|
||||
ν = acos(1.)
|
||||
else
|
||||
error("bad ν")
|
||||
ν = acos(1.)
|
||||
end
|
||||
Ω = dot(n_xyz,[0,1,0]) > 0. ? Ω : -Ω
|
||||
ω = dot(e_xyz,[0,0,1]) > 0. ? ω : -ω
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
function laguerre_conway(state::Vector{Float64}, μ::Float64, time::Float64)
|
||||
function laguerre_conway(state::Vector{T}, μ::Float64, time::Float64) where T <: Real
|
||||
|
||||
n = 5 # Choose LaGuerre-Conway "n"
|
||||
i = 0
|
||||
@@ -14,7 +14,7 @@ function laguerre_conway(state::Vector{Float64}, μ::Float64, time::Float64)
|
||||
if a > 0 # Elliptical
|
||||
ΔM = ΔE_new = √(μ) / sqrt(a^3) * time
|
||||
ΔE = 1000
|
||||
while abs(ΔE - ΔE_new) > 1e-12
|
||||
while abs(ΔE - ΔE_new) > 1e-10
|
||||
ΔE = ΔE_new
|
||||
F = ΔE - ΔM + σ0 / √(a) * (1-cos(ΔE)) - coeff * sin(ΔE)
|
||||
dF = 1 + σ0 / √(a) * sin(ΔE) - coeff * cos(ΔE)
|
||||
@@ -32,7 +32,7 @@ function laguerre_conway(state::Vector{Float64}, μ::Float64, time::Float64)
|
||||
ΔN = √(μ) / sqrt(-a^3) * time
|
||||
ΔH = 0
|
||||
ΔH_new = time < 0 ? -1 : 1
|
||||
while abs(ΔH - ΔH_new) > 1e-12
|
||||
while abs(ΔH - ΔH_new) > 1e-10
|
||||
ΔH = ΔH_new
|
||||
F = -ΔN - ΔH + σ0 / √(-a) * (cos(ΔH)-1) + coeff * sin(ΔH)
|
||||
dF = -1 + σ0 / √(-a) * sin(ΔH) + coeff * cos(ΔH)
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
using LinearAlgebra, JuMP, Ipopt
|
||||
using LinearAlgebra, ForwardDiff, Blink, PlotlyJS
|
||||
|
||||
include("constants.jl")
|
||||
include("conversions.jl")
|
||||
@@ -6,3 +6,5 @@ include("spacecraft.jl")
|
||||
include("plotting.jl")
|
||||
include("laguerre-conway.jl")
|
||||
include("propagator.jl")
|
||||
include("result.jl")
|
||||
include("single_shoot.jl")
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
"""
|
||||
Maximum ΔV that a spacecraft can impulse for a given single time step
|
||||
"""
|
||||
function max_ΔV(duty_cycle::Float64,
|
||||
function max_ΔV(duty_cycle::T,
|
||||
num_thrusters::Int,
|
||||
max_thrust::Float64,
|
||||
tf::Float64,
|
||||
t0::Float64,
|
||||
mass::Float64)
|
||||
max_thrust::T,
|
||||
tf::T,
|
||||
t0::T,
|
||||
mass::S) where {T <: Real, S <: Real}
|
||||
return duty_cycle*num_thrusters*max_thrust*(tf-t0)/mass
|
||||
end
|
||||
|
||||
@@ -14,33 +14,49 @@ end
|
||||
This function propagates the spacecraft forward in time 1 Sim-Flanagan step (of variable length of time),
|
||||
applying a thrust in the center.
|
||||
"""
|
||||
function prop_one(ΔV_unit::Vector{Float64},
|
||||
state::Vector{Float64},
|
||||
function prop_one(ΔV::Vector{T},
|
||||
state::Vector{S},
|
||||
duty_cycle::Float64,
|
||||
num_thrusters::Int,
|
||||
max_thrust::Float64,
|
||||
mass::Float64,
|
||||
mass::S,
|
||||
mass_flow_rate::Float64,
|
||||
μ::Float64,
|
||||
time::Float64)
|
||||
time::Float64) where {T <: Real, S <: Real}
|
||||
|
||||
if norm(ΔV_unit) > 1.
|
||||
throw(ErrorException("ΔV input is too high"))
|
||||
mag, α, β = ΔV
|
||||
|
||||
if mag > 1 || mag < 0
|
||||
throw(ErrorException("ΔV input is too high: $mag"))
|
||||
elseif α > π || α < -π
|
||||
throw(ErrorException("α angle is incorrect: $α"))
|
||||
elseif β > π/2 || β < -π/2
|
||||
throw(ErrorException("β angle is incorrect: $β"))
|
||||
end
|
||||
halfway = laguerre_conway(state, μ, time/2)
|
||||
halfway[4:6] += ΔV_unit * max_ΔV(duty_cycle, num_thrusters, max_thrust, time, 0., mass)
|
||||
return laguerre_conway(halfway, μ, time/2), mass - mass_flow_rate*norm(ΔV_unit)*time
|
||||
|
||||
thrust_rθh = mag * [cos(β)*sin(α), cos(β)*cos(α), sin(β)]
|
||||
a,e,i,Ω,ω,ν = xyz_to_oe(state, μ)
|
||||
θ = ω+ν
|
||||
cΩ,sΩ,ci,si,cθ,sθ = cos(Ω),sin(Ω),cos(i),sin(i),cos(θ),sin(θ)
|
||||
DCM = [cΩ*cθ-sΩ*ci*sθ -cΩ*sθ-sΩ*ci*cθ sΩ*si;
|
||||
sΩ*cθ+cΩ*ci*sθ -sΩ*sθ+cΩ*ci*cθ -cΩ*si;
|
||||
si*sθ si*cθ ci]
|
||||
ΔV = DCM*thrust_rθh
|
||||
|
||||
thrust = max_ΔV(duty_cycle, num_thrusters, max_thrust, time, 0., mass) * ΔV
|
||||
halfway = laguerre_conway(state, μ, time/2) + [0., 0., 0., thrust[1], thrust[2], thrust[3]]
|
||||
return laguerre_conway(halfway, μ, time/2), mass - mass_flow_rate*norm(ΔV)*time
|
||||
|
||||
end
|
||||
|
||||
"""
|
||||
A convenience function for using spacecraft. Note that this function outputs a sc instead of a mass
|
||||
"""
|
||||
function prop_one(ΔV_unit::Vector{Float64},
|
||||
state::Vector{Float64},
|
||||
function prop_one(ΔV_unit::Vector{T},
|
||||
state::Vector{S},
|
||||
craft::Sc,
|
||||
μ::Float64,
|
||||
time::Float64)
|
||||
time::Float64) where {T <: Real,S <: Real}
|
||||
state, mass = prop_one(ΔV_unit, state, craft.duty_cycle, craft.num_thrusters, craft.max_thrust,
|
||||
craft.mass, craft.mass_flow_rate, μ, time)
|
||||
return state, Sc(mass, craft.mass_flow_rate, craft.max_thrust, craft.num_thrusters, craft.duty_cycle)
|
||||
@@ -49,7 +65,7 @@ end
|
||||
"""
|
||||
This propagates over a given time period, with a certain number of intermediate steps
|
||||
"""
|
||||
function prop(ΔV_units::Vector{Vector{Float64}},
|
||||
function prop(ΔVs::Matrix{T},
|
||||
state::Vector{Float64},
|
||||
duty_cycle::Float64,
|
||||
num_thrusters::Int,
|
||||
@@ -57,15 +73,13 @@ function prop(ΔV_units::Vector{Vector{Float64}},
|
||||
mass::Float64,
|
||||
mass_flow_rate::Float64,
|
||||
μ::Float64,
|
||||
time::Float64,
|
||||
n::Int)
|
||||
time::Float64) where T <: Real
|
||||
|
||||
if length(ΔV_units) != n
|
||||
throw(ExceptionError("Bad number of ΔV vectors"))
|
||||
end
|
||||
if size(ΔVs)[2] != 3 throw(ErrorException("ΔV input is wrong size")) end
|
||||
n = size(ΔVs)[i]
|
||||
|
||||
for i in 1:n
|
||||
state, mass = prop_one(ΔV_units[i], state, duty_cycle, num_thrusters, max_thrust, mass,
|
||||
state, mass = prop_one(ΔVs[i,:], state, duty_cycle, num_thrusters, max_thrust, mass,
|
||||
mass_flow_rate, μ, time/n)
|
||||
end
|
||||
|
||||
@@ -76,22 +90,20 @@ end
|
||||
"""
|
||||
The same function, using Scs
|
||||
"""
|
||||
function prop(ΔV_units::Vector{Vector{Float64}},
|
||||
function prop(ΔVs::AbstractArray{T},
|
||||
state::Vector{Float64},
|
||||
craft::Sc,
|
||||
μ::Float64,
|
||||
time::Float64,
|
||||
n::Int)
|
||||
time::Float64) where T <: Real
|
||||
|
||||
if length(ΔV_units) != n
|
||||
throw(ExceptionError("Bad number of ΔV vectors"))
|
||||
end
|
||||
if size(ΔVs)[2] != 3 throw(ErrorException("ΔV input is wrong size")) end
|
||||
n = size(ΔVs)[1]
|
||||
|
||||
states = state'
|
||||
masses = craft.mass
|
||||
|
||||
for i in 1:n
|
||||
state, craft = prop_one(ΔV_units[i], state, craft, μ, time/n)
|
||||
state, craft = prop_one(ΔVs[i,:], state, craft, μ, time/n)
|
||||
states = [states; state']
|
||||
masses = [masses, craft.mass]
|
||||
end
|
||||
|
||||
16
julia/result.jl
Normal file
16
julia/result.jl
Normal file
@@ -0,0 +1,16 @@
|
||||
struct Result
|
||||
converged::Bool
|
||||
ΔVs::Matrix{Float64}
|
||||
start::Vector{Float64}
|
||||
final::Vector{Float64}
|
||||
end
|
||||
|
||||
function Result(name::String)
|
||||
if name == "test_converged"
|
||||
return Result(true, Matrix(undef,0,0), Vector{Float64}(), Vector{Float64}())
|
||||
elseif name == "test_unconverged"
|
||||
return Result(false, Matrix(undef,0,0), Vector{Float64}(), Vector{Float64}())
|
||||
else
|
||||
throw(ErrorException("Bad result name"))
|
||||
end
|
||||
end
|
||||
33
julia/single_shoot.jl
Normal file
33
julia/single_shoot.jl
Normal file
@@ -0,0 +1,33 @@
|
||||
using NLsolve
|
||||
|
||||
function treat_inputs(x::AbstractVector, n::Int)
|
||||
inputs = reshape(copy(x),(3,n))'
|
||||
for i in 1:n
|
||||
inputs[i,1] = 0.5*tanh(inputs[i,1]) + 0.5
|
||||
inputs[i,2] = π*tanh(inputs[i,2])
|
||||
inputs[i,3] = π*tanh(inputs[i,3])/2
|
||||
end
|
||||
return inputs
|
||||
end
|
||||
|
||||
function single_shoot(start::Vector{Float64},
|
||||
final::Vector{Float64},
|
||||
craft::Sc,
|
||||
μ::Float64,
|
||||
t0::Float64,
|
||||
tf::Float64,
|
||||
n::Int,
|
||||
x0::AbstractVector,
|
||||
tol=1e-2)
|
||||
|
||||
function f!(F,x)
|
||||
F[1:6] .= prop(treat_inputs(x,n), start, craft, μ, tf-t0)[1][end,:] - final
|
||||
F[7:3n] .= 0.
|
||||
# if typeof(F[1]) == Float64 println(F[1:6]) end
|
||||
# if typeof(F[1]) == Float64 println(treat_inputs(x,n)[1:8,1]) end
|
||||
|
||||
end
|
||||
|
||||
return nlsolve(f!, x0, ftol=tol, autodiff=:forward, iterations=10_000)
|
||||
|
||||
end
|
||||
@@ -1,5 +1,5 @@
|
||||
struct Sc
|
||||
mass::Float64
|
||||
struct Sc{T <: Real}
|
||||
mass::T
|
||||
mass_flow_rate::Float64
|
||||
max_thrust::Float64
|
||||
num_thrusters::Int
|
||||
@@ -8,9 +8,9 @@ end
|
||||
|
||||
function Sc(name::String)
|
||||
if name == "test"
|
||||
return Sc(1000., 0.01, 0.1, 2, 1.)
|
||||
return Sc(10000., 0.01, 0.05, 2, 1.)
|
||||
elseif name == "no_thrust"
|
||||
return Sc(1000., 0.01, 0., 0, 0.)
|
||||
return Sc(10000., 0.01, 0., 0, 0.)
|
||||
else
|
||||
throw(ErrorException("Bad sc name"))
|
||||
end
|
||||
|
||||
@@ -2,15 +2,16 @@
|
||||
|
||||
# First some setup
|
||||
sc = Sc("test")
|
||||
T = rand(3600*1.5:0.01:3600*4)
|
||||
T = rand(3600*2:0.01:3600*4)
|
||||
start = oe_to_xyz([ (μs["Earth"]*(T/(2π))^2)^(1/3),
|
||||
0.3,
|
||||
0.1,
|
||||
π/4,
|
||||
0.,
|
||||
0.,
|
||||
1. ], μs["Earth"])
|
||||
ΔVs = [ [1., 1., 1.]/20 for _ in 1:40 ]
|
||||
path = prop(ΔVs, start, sc, μs["Earth"], 0.9T, 40)[1]
|
||||
n = 100
|
||||
ΔVs = repeat([0.5, 0., 0.]', outer=(n,1))
|
||||
path = prop(ΔVs, start, sc, μs["Earth"], 3T)[1]
|
||||
p = plot_orbits([path])
|
||||
savefig(p,"plot_test.html")
|
||||
@test typeof(p) == PlotlyJS.SyncPlot
|
||||
|
||||
@@ -15,19 +15,23 @@
|
||||
|
||||
# Test that Laguerre-Conway is the default propagator for spacecrafts
|
||||
craft = Sc("no_thrust")
|
||||
start_mass = craft.mass
|
||||
state, craft = prop_one([0., 0., 0.], start, craft, μs["Earth"], stepsize)
|
||||
@test laguerre_conway(start, μs["Earth"], stepsize) ≈ state
|
||||
@test craft.mass == 1000.
|
||||
@test craft.mass == start_mass
|
||||
|
||||
# Test that mass is reduced properly
|
||||
craft = Sc("test")
|
||||
start_mass = craft.mass
|
||||
state, craft = prop_one([1., 1., 1.]/√(3), start, craft, μs["Earth"], stepsize)
|
||||
state, craft = prop_one([1., 0., 0.], start, craft, μs["Earth"], stepsize)
|
||||
@test craft.mass == start_mass - craft.mass_flow_rate*stepsize
|
||||
|
||||
# Test that a bad ΔV throws an error
|
||||
craft = Sc("test")
|
||||
start_mass = craft.mass
|
||||
@test_throws ErrorException prop_one([1., 1., -1.], start, craft, μs["Earth"], stepsize)
|
||||
@test_throws ErrorException prop_one([1.5, 0., 0.], start, craft, μs["Earth"], stepsize)
|
||||
|
||||
# Test that a full propagation doesn't take too long
|
||||
|
||||
|
||||
end
|
||||
|
||||
16
julia/test/result.jl
Normal file
16
julia/test/result.jl
Normal file
@@ -0,0 +1,16 @@
|
||||
@testset "Result Construction" begin
|
||||
|
||||
# Test that the standard results can be created
|
||||
result = Result("test_converged")
|
||||
@test result.converged == true
|
||||
@test length(result.ΔVs) == 0
|
||||
@test length(result.start) == 0
|
||||
@test length(result.final) == 0
|
||||
|
||||
result = Result("test_unconverged")
|
||||
@test result.converged == false
|
||||
@test length(result.ΔVs) == 0
|
||||
@test length(result.start) == 0
|
||||
@test length(result.final) == 0
|
||||
|
||||
end
|
||||
31
julia/test/single_shoot.jl
Normal file
31
julia/test/single_shoot.jl
Normal file
@@ -0,0 +1,31 @@
|
||||
@testset "Single Shooting" begin
|
||||
|
||||
# Initial Setup
|
||||
sc = Sc("test")
|
||||
a = rand(15000:1.:40000)
|
||||
e = rand(0.01:0.01:0.5)
|
||||
i = rand(0.01:0.01:π/6)
|
||||
T = 2π*√(a^3/μs["Earth"])
|
||||
n = 50
|
||||
|
||||
# A simple orbit raising
|
||||
start = oe_to_xyz([ a, e, i, 0., 0., 0. ], μs["Earth"])
|
||||
ΔVs = repeat([0.6, 0., 0.]', outer=(n,1))
|
||||
final = prop(ΔVs, start, sc, μs["Earth"], T)[1][end,:]
|
||||
|
||||
# This should be close enough to 0.6
|
||||
x0 = repeat([atanh((0.4-0.5)/0.5), 0., 0.], n)
|
||||
result = single_shoot(start, final, sc, μs["Earth"], 0.0, T, n, x0)
|
||||
|
||||
# Test and plot
|
||||
@test converged(result)
|
||||
path1 = prop(zeros((100,3)), start, sc, μs["Earth"], T)[1]
|
||||
path2, mass = prop(treat_inputs(result.zero, n), start, sc, μs["Earth"], T)
|
||||
path3 = prop(zeros((100,3)), path2[end,:], sc, μs["Earth"], T)[1]
|
||||
savefig(plot_orbits([path1, path2, path3]), "single_shoot_test.html")
|
||||
if converged(result)
|
||||
@test norm(path2[end,:] - final) < 2e-2
|
||||
sc = Sc("test")
|
||||
end
|
||||
|
||||
end
|
||||
@@ -2,14 +2,14 @@
|
||||
|
||||
# Test that the standard spacecraft can be created
|
||||
craft = Sc("test")
|
||||
@test craft.mass == 1000.
|
||||
@test craft.mass == 10000.
|
||||
@test craft.mass_flow_rate == 0.01
|
||||
@test craft.max_thrust == 0.1
|
||||
@test craft.max_thrust == 0.05
|
||||
@test craft.num_thrusters == 2
|
||||
@test craft.duty_cycle == 1.
|
||||
|
||||
craft = Sc("no_thrust")
|
||||
@test craft.mass == 1000.
|
||||
@test craft.mass == 10000.
|
||||
@test craft.mass_flow_rate == 0.01
|
||||
@test craft.max_thrust == 0.
|
||||
@test craft.num_thrusters == 0
|
||||
|
||||
@@ -10,6 +10,8 @@ include("../main.jl")
|
||||
include("laguerre-conway.jl")
|
||||
include("propagator.jl")
|
||||
include("plotting.jl")
|
||||
include("result.jl")
|
||||
include("single_shoot.jl")
|
||||
end
|
||||
|
||||
print()
|
||||
|
||||
Reference in New Issue
Block a user