I THINK that the single shooter is ok. I can always improve it later
This commit is contained in:
@@ -1,12 +1,12 @@
|
||||
"""
|
||||
Maximum ΔV that a spacecraft can impulse for a given single time step
|
||||
"""
|
||||
function max_ΔV(duty_cycle::Float64,
|
||||
function max_ΔV(duty_cycle::T,
|
||||
num_thrusters::Int,
|
||||
max_thrust::Float64,
|
||||
tf::Float64,
|
||||
t0::Float64,
|
||||
mass::Float64)
|
||||
max_thrust::T,
|
||||
tf::T,
|
||||
t0::T,
|
||||
mass::S) where {T <: Real, S <: Real}
|
||||
return duty_cycle*num_thrusters*max_thrust*(tf-t0)/mass
|
||||
end
|
||||
|
||||
@@ -14,33 +14,49 @@ end
|
||||
This function propagates the spacecraft forward in time 1 Sim-Flanagan step (of variable length of time),
|
||||
applying a thrust in the center.
|
||||
"""
|
||||
function prop_one(ΔV_unit::Vector{Float64},
|
||||
state::Vector{Float64},
|
||||
function prop_one(ΔV::Vector{T},
|
||||
state::Vector{S},
|
||||
duty_cycle::Float64,
|
||||
num_thrusters::Int,
|
||||
max_thrust::Float64,
|
||||
mass::Float64,
|
||||
mass::S,
|
||||
mass_flow_rate::Float64,
|
||||
μ::Float64,
|
||||
time::Float64)
|
||||
time::Float64) where {T <: Real, S <: Real}
|
||||
|
||||
if norm(ΔV_unit) > 1.
|
||||
throw(ErrorException("ΔV input is too high"))
|
||||
mag, α, β = ΔV
|
||||
|
||||
if mag > 1 || mag < 0
|
||||
throw(ErrorException("ΔV input is too high: $mag"))
|
||||
elseif α > π || α < -π
|
||||
throw(ErrorException("α angle is incorrect: $α"))
|
||||
elseif β > π/2 || β < -π/2
|
||||
throw(ErrorException("β angle is incorrect: $β"))
|
||||
end
|
||||
halfway = laguerre_conway(state, μ, time/2)
|
||||
halfway[4:6] += ΔV_unit * max_ΔV(duty_cycle, num_thrusters, max_thrust, time, 0., mass)
|
||||
return laguerre_conway(halfway, μ, time/2), mass - mass_flow_rate*norm(ΔV_unit)*time
|
||||
|
||||
thrust_rθh = mag * [cos(β)*sin(α), cos(β)*cos(α), sin(β)]
|
||||
a,e,i,Ω,ω,ν = xyz_to_oe(state, μ)
|
||||
θ = ω+ν
|
||||
cΩ,sΩ,ci,si,cθ,sθ = cos(Ω),sin(Ω),cos(i),sin(i),cos(θ),sin(θ)
|
||||
DCM = [cΩ*cθ-sΩ*ci*sθ -cΩ*sθ-sΩ*ci*cθ sΩ*si;
|
||||
sΩ*cθ+cΩ*ci*sθ -sΩ*sθ+cΩ*ci*cθ -cΩ*si;
|
||||
si*sθ si*cθ ci]
|
||||
ΔV = DCM*thrust_rθh
|
||||
|
||||
thrust = max_ΔV(duty_cycle, num_thrusters, max_thrust, time, 0., mass) * ΔV
|
||||
halfway = laguerre_conway(state, μ, time/2) + [0., 0., 0., thrust[1], thrust[2], thrust[3]]
|
||||
return laguerre_conway(halfway, μ, time/2), mass - mass_flow_rate*norm(ΔV)*time
|
||||
|
||||
end
|
||||
|
||||
"""
|
||||
A convenience function for using spacecraft. Note that this function outputs a sc instead of a mass
|
||||
"""
|
||||
function prop_one(ΔV_unit::Vector{Float64},
|
||||
state::Vector{Float64},
|
||||
function prop_one(ΔV_unit::Vector{T},
|
||||
state::Vector{S},
|
||||
craft::Sc,
|
||||
μ::Float64,
|
||||
time::Float64)
|
||||
time::Float64) where {T <: Real,S <: Real}
|
||||
state, mass = prop_one(ΔV_unit, state, craft.duty_cycle, craft.num_thrusters, craft.max_thrust,
|
||||
craft.mass, craft.mass_flow_rate, μ, time)
|
||||
return state, Sc(mass, craft.mass_flow_rate, craft.max_thrust, craft.num_thrusters, craft.duty_cycle)
|
||||
@@ -49,7 +65,7 @@ end
|
||||
"""
|
||||
This propagates over a given time period, with a certain number of intermediate steps
|
||||
"""
|
||||
function prop(ΔV_units::Vector{Vector{Float64}},
|
||||
function prop(ΔVs::Matrix{T},
|
||||
state::Vector{Float64},
|
||||
duty_cycle::Float64,
|
||||
num_thrusters::Int,
|
||||
@@ -57,15 +73,13 @@ function prop(ΔV_units::Vector{Vector{Float64}},
|
||||
mass::Float64,
|
||||
mass_flow_rate::Float64,
|
||||
μ::Float64,
|
||||
time::Float64,
|
||||
n::Int)
|
||||
time::Float64) where T <: Real
|
||||
|
||||
if length(ΔV_units) != n
|
||||
throw(ExceptionError("Bad number of ΔV vectors"))
|
||||
end
|
||||
if size(ΔVs)[2] != 3 throw(ErrorException("ΔV input is wrong size")) end
|
||||
n = size(ΔVs)[i]
|
||||
|
||||
for i in 1:n
|
||||
state, mass = prop_one(ΔV_units[i], state, duty_cycle, num_thrusters, max_thrust, mass,
|
||||
state, mass = prop_one(ΔVs[i,:], state, duty_cycle, num_thrusters, max_thrust, mass,
|
||||
mass_flow_rate, μ, time/n)
|
||||
end
|
||||
|
||||
@@ -76,22 +90,20 @@ end
|
||||
"""
|
||||
The same function, using Scs
|
||||
"""
|
||||
function prop(ΔV_units::Vector{Vector{Float64}},
|
||||
function prop(ΔVs::AbstractArray{T},
|
||||
state::Vector{Float64},
|
||||
craft::Sc,
|
||||
μ::Float64,
|
||||
time::Float64,
|
||||
n::Int)
|
||||
time::Float64) where T <: Real
|
||||
|
||||
if length(ΔV_units) != n
|
||||
throw(ExceptionError("Bad number of ΔV vectors"))
|
||||
end
|
||||
if size(ΔVs)[2] != 3 throw(ErrorException("ΔV input is wrong size")) end
|
||||
n = size(ΔVs)[1]
|
||||
|
||||
states = state'
|
||||
masses = craft.mass
|
||||
|
||||
for i in 1:n
|
||||
state, craft = prop_one(ΔV_units[i], state, craft, μ, time/n)
|
||||
state, craft = prop_one(ΔVs[i,:], state, craft, μ, time/n)
|
||||
states = [states; state']
|
||||
masses = [masses, craft.mass]
|
||||
end
|
||||
|
||||
Reference in New Issue
Block a user