Might change the structure again...
This commit is contained in:
1
.gitignore
vendored
1
.gitignore
vendored
@@ -1,3 +1,4 @@
|
||||
pdf/
|
||||
**/*.pdf
|
||||
julia/**/*.html
|
||||
julia/test/ipopt.out
|
||||
|
||||
@@ -16,6 +16,7 @@ module Thesis
|
||||
end
|
||||
|
||||
include("./errors.jl")
|
||||
include("./bodies.jl")
|
||||
include("./constants.jl")
|
||||
include("./spacecraft.jl")
|
||||
include("./mission.jl")
|
||||
|
||||
17
julia/src/bodies.jl
Normal file
17
julia/src/bodies.jl
Normal file
@@ -0,0 +1,17 @@
|
||||
export state
|
||||
|
||||
struct Body
|
||||
μ::Float64
|
||||
r::Float64 # radius
|
||||
color::String
|
||||
id::Int # SPICE id
|
||||
end
|
||||
|
||||
function state(p::Body, t::DateTime, add_v∞::Vector{Float64}=[0., 0., 0.], add_mass::Float64=1e10)
|
||||
time = utc2et(Dates.format(t,"yyyy-mm-ddTHH:MM:SS"))
|
||||
[ spkssb(p.id, time, "ECLIPJ2000"); 0.0 ] + [ zeros(3); add_v∞; add_mass ]
|
||||
end
|
||||
|
||||
function state(p::Body, t::Float64, add_v∞::Vector{Float64}=[0., 0., 0.], add_mass::Float64=1e10)
|
||||
[ spkssb(p.id, t, "ECLIPJ2000"); 0.0 ] + [ zeros(3); add_v∞; add_mass ]
|
||||
end
|
||||
@@ -7,13 +7,6 @@ export Jupiter, Saturn, Uranus, Neptune, Pluto
|
||||
export G, AU, init_STM, hour, day, year, second
|
||||
export Pathlist
|
||||
|
||||
struct Body
|
||||
μ::Float64
|
||||
r::Float64 # radius
|
||||
color::String
|
||||
id::Int # SPICE id
|
||||
end
|
||||
|
||||
const Sun = Body(1.32712440018e11, 696000., "Electric", 10)
|
||||
const Mercury = Body(2.2032e4, 2439., "heat", 1)
|
||||
const Venus = Body(3.257e5, 6052., "turbid", 2)
|
||||
|
||||
@@ -2,12 +2,21 @@ struct LaGuerreConway_Error <: Exception end
|
||||
|
||||
struct ΔVsize_Error <: Exception end
|
||||
|
||||
struct HitPlanet_Error <: Exception end
|
||||
Base.showerror(io::IO, e::HitPlanet_Error) = print(io, "spacecraft hit the planet...")
|
||||
|
||||
struct Convergence_Error <: Exception end
|
||||
Base.showerror(io::IO, e::Convergence_Error) = print(io, "NLP solver didn't converge...")
|
||||
|
||||
struct GenOrbit_Error <: Exception end
|
||||
Base.showerror(io::IO, e::GenOrbit_Error) = print(io, "infinite Loop trying to generate the init orbit")
|
||||
|
||||
struct V∞_Error <: Exception
|
||||
v∞_in::AbstractVector
|
||||
v∞_out::AbstractVector
|
||||
end
|
||||
Base.showerror(io::IO, e::V∞_Error) = print(io, "v∞s weren't the same: ", e.v∞_in, " and ", e.v∞_out)
|
||||
|
||||
struct PropOne_Error <: Exception
|
||||
ΔV_unit::AbstractVector
|
||||
end
|
||||
|
||||
@@ -41,30 +41,35 @@ function gen_date(date_range::Tuple{DateTime, DateTime})
|
||||
l0 + Millisecond(floor(rand()*(lf-l0).value))
|
||||
end
|
||||
|
||||
"""
|
||||
Returns a random amount of time in a range
|
||||
"""
|
||||
function gen_period(date_range::Tuple{DateTime, DateTime})
|
||||
l0, lf = date_range
|
||||
Millisecond(floor(rand()*(lf-l0).value))
|
||||
end
|
||||
|
||||
"""
|
||||
Perturbs a valid mission with pareto-distributed variables, generating a mission guess
|
||||
"""
|
||||
function perturb(mission::Mission)
|
||||
new_launch_date = mission.launch_date + Dates.Second(floor(7day * pareto_add()))
|
||||
new_launch_v∞ = mission.launch_v∞ .* pareto(3)
|
||||
new_phases = Vector{Phase}()
|
||||
for phase in mission.phases
|
||||
new_v∞_in = phase.v∞_in .* pareto(3)
|
||||
new_δ = phase.δ * pareto()
|
||||
new_tof = phase.tof * pareto()
|
||||
new_thrust_profile = phase.thrust_profile .* pareto(size(phase.thrust_profile))
|
||||
push!(new_phases, Phase(phase.planet, new_v∞_in, new_δ, new_tof, new_thrust_profile))
|
||||
mission_guess = Bad_Mission("Starting point")
|
||||
while typeof(mission_guess) == Bad_Mission
|
||||
new_launch_date = mission.launch_date + Dates.Second(floor(7day * pareto_add()))
|
||||
new_launch_v∞ = mission.launch_v∞ .* pareto(3)
|
||||
new_phases = Vector{Phase}()
|
||||
for phase in mission.phases
|
||||
new_v∞_in = phase.v∞_in .* pareto(3)
|
||||
temp_v∞_out = phase.v∞_out .* pareto(3)
|
||||
new_v∞_out = norm(new_v∞_in) * temp_v∞_out/norm(temp_v∞_out)
|
||||
new_tof = phase.tof * pareto()
|
||||
new_thrust_profile = phase.thrust_profile .* pareto(size(phase.thrust_profile))
|
||||
push!(new_phases, Phase(phase.planet, new_v∞_in, new_v∞_out, new_tof, new_thrust_profile))
|
||||
end
|
||||
# TODO: Mission_Guess.validate()
|
||||
try
|
||||
mission_guess = Mission_Guess(mission.sc, mission.start_mass, new_launch_date, new_launch_v∞, new_phases)
|
||||
catch e
|
||||
if isa(e, Mass_Error) ||isa(e,V∞_Error) || isa(e,HitPlanet_Error)
|
||||
continue
|
||||
else
|
||||
rethrow()
|
||||
end
|
||||
end
|
||||
end
|
||||
# TODO: Mission_Guess.validate()
|
||||
Mission_Guess(mission.sc, mission.start_mass, new_launch_date, new_launch_v∞, new_phases)
|
||||
return mission_guess
|
||||
end
|
||||
|
||||
"""
|
||||
@@ -78,66 +83,63 @@ function mission_guess( flybys::Vector{Body},
|
||||
max_v∞_in_mag::Float64,
|
||||
latest_arrival::DateTime,
|
||||
primary::Body=Sun )
|
||||
# TODO: Eventually I can calculate n more intelligently
|
||||
n = 20
|
||||
mission_guess = Bad_Mission("Keep trying to generate a guess")
|
||||
while mission_guess == Bad_Mission("Keep trying to generate a guess")
|
||||
# TODO: Eventually I can calculate n more intelligently
|
||||
n = 20
|
||||
|
||||
# Determine the launch conditions
|
||||
launch_date = gen_date(launch_window)
|
||||
launch_v∞_normalized = rand(-1:0.0001:1, 3)
|
||||
launch_v∞ = rand(0:0.0001:√max_C3_out) * launch_v∞_normalized/norm(launch_v∞_normalized)
|
||||
# Determine the launch conditions
|
||||
launch_date = gen_date(launch_window)
|
||||
launch_v∞_normalized = rand(-1:0.0001:1, 3)
|
||||
launch_v∞ = rand(0:0.0001:√max_C3_out) * launch_v∞_normalized/norm(launch_v∞_normalized)
|
||||
|
||||
# Determine the leg lengths
|
||||
num_phases = length(flybys) - 1
|
||||
total_tof = 100year
|
||||
max_tof = (latest_arrival - launch_date).value / 1000
|
||||
tofs = rand(30day : hour : 0.7max_tof, num_phases)
|
||||
total_tof = sum(tofs)
|
||||
while total_tof > max_tof
|
||||
# Determine the leg lengths
|
||||
num_phases = length(flybys) - 1
|
||||
total_tof = 100year
|
||||
max_tof = (latest_arrival - launch_date).value / 1000
|
||||
tofs = rand(30day : hour : 0.7max_tof, num_phases)
|
||||
total_tof = sum(tofs)
|
||||
end
|
||||
|
||||
# For each phase, determine the v∞_in and δ
|
||||
phases = Vector{Phase}()
|
||||
for i in 1:num_phases
|
||||
flyby = flybys[i+1]
|
||||
v∞_normalized = rand(-1:0.0001:1, 3)
|
||||
v∞ = rand(0:0.0001:10) * v∞_normalized/norm(v∞_normalized)
|
||||
δ = rand(0:0.0001:2π)
|
||||
periapsis = (flyby.μ/(v∞ ⋅ v∞)) * ( 1/sin(δ/2) - 1 )
|
||||
while periapsis < flyby.r + 100.
|
||||
δ = rand(0:0.0001:2π)
|
||||
periapsis = (flyby.μ/(v∞ ⋅ v∞)) * ( 1/sin(δ/2) - 1 )
|
||||
while total_tof > max_tof
|
||||
tofs = rand(30day : hour : 0.7max_tof, num_phases)
|
||||
total_tof = sum(tofs)
|
||||
end
|
||||
|
||||
# For each phase, determine the v∞_in and δ
|
||||
phases = Vector{Phase}()
|
||||
for i in 1:num_phases
|
||||
flyby = flybys[i+1]
|
||||
v∞_in_normalized = rand(-1:0.0001:1, 3)
|
||||
v∞_in = rand(0:0.0001:10) * v∞_in_normalized/norm(v∞_in_normalized)
|
||||
v∞_out_normalized = rand(-1:0.0001:1, 3)
|
||||
v∞_out = norm(v∞_in) * v∞_out_normalized/norm(v∞_out_normalized)
|
||||
δ = acos( ( v∞_in ⋅ v∞_out ) / ( norm(v∞_in) * norm(v∞_out) ) )
|
||||
periapsis = (flyby.μ/(v∞_in ⋅ v∞_in)) * ( 1/sin(δ/2) - 1 )
|
||||
while periapsis < flyby.r + 100.
|
||||
v∞_out_normalized = rand(-1:0.0001:1, 3)
|
||||
v∞_out = norm(v∞_in) * v∞_out_normalized/norm(v∞_out_normalized)
|
||||
δ = acos( ( v∞_in ⋅ v∞_out ) / ( norm(v∞_in) * norm(v∞_out) ) )
|
||||
periapsis = (flyby.μ/(v∞_in ⋅ v∞_in)) * ( 1/sin(δ/2) - 1 )
|
||||
end
|
||||
thrusts = rand(-1:0.0001:1,(n,3))
|
||||
push!(phases, Phase(flyby, v∞_in, v∞_out, tofs[i], thrusts))
|
||||
end
|
||||
|
||||
# Finally, determine the arrival v∞
|
||||
arrival_v∞_normalized = rand(-1:0.0001:1, 3)
|
||||
arrival_v∞ = rand(0:0.0001:max_v∞_in_mag) * arrival_v∞_normalized/norm(arrival_v∞_normalized)
|
||||
|
||||
# And we can construct a mission guess object with these values
|
||||
try
|
||||
mission_guess = Mission_Guess( sc, start_mass, launch_date, launch_v∞, phases )
|
||||
catch e
|
||||
if isa(e, Mass_Error) ||isa(e,V∞_Error) || isa(e,HitPlanet_Error)
|
||||
continue
|
||||
else
|
||||
rethrow()
|
||||
end
|
||||
end
|
||||
thrusts = rand(-1:0.0001:1,(n,3))
|
||||
push!(phases, Phase(flyby, v∞, δ, tofs[i], thrusts))
|
||||
end
|
||||
|
||||
# Finally, determine the arrival v∞
|
||||
arrival_v∞_normalized = rand(-1:0.0001:1, 3)
|
||||
arrival_v∞ = rand(0:0.0001:max_v∞_in_mag) * arrival_v∞_normalized/norm(arrival_v∞_normalized)
|
||||
|
||||
# And we can construct a mission guess object with these values
|
||||
Mission_Guess( sc, start_mass, launch_date, launch_v∞, phases )
|
||||
end
|
||||
|
||||
"""
|
||||
A convenience function for calculating mass usage given a certain thrust profile
|
||||
"""
|
||||
function mass_consumption(sc::Sc, phase::Phase)
|
||||
weighted_thrusting_time = 0.0
|
||||
n = size(phase.thrust_profile)[1]
|
||||
for i in 1:size(phase.thrust_profile,1)
|
||||
weighted_thrusting_time += norm(phase.thrust_profile[i,:]) * phase.tof/n
|
||||
end
|
||||
return weighted_thrusting_time*sc.mass_flow_rate
|
||||
end
|
||||
|
||||
"""
|
||||
This attempts to determine v∞_out from v∞_in and the turning angle, assuming we are staying in the
|
||||
plane of the three planets
|
||||
"""
|
||||
function calc_turn(p1::Body, p2::Body, p3::Body, v∞_in::Vector{Float64}, δ::Float64)
|
||||
return mission_guess
|
||||
end
|
||||
|
||||
"""
|
||||
@@ -145,25 +147,26 @@ Sequentially calls the NLP solver to attempt to solve based on the initial guess
|
||||
"""
|
||||
function inner_loop_solve(guess::Mission_Guess)
|
||||
v∞_out = guess.launch_v∞
|
||||
time = utc2et(Dates.format(guess.launch_date,"yyyy-mm-ddTHH:MM:SS"))
|
||||
mass = guess.start_mass
|
||||
current_planet = Earth
|
||||
start = [spkssb(Earth.id, time, "ECLIPJ2000"); 0.0] + [ zeros(3); guess.launch_v∞; guess.start_mass ]
|
||||
time = utc2et(Dates.format(guess.launch_date,"yyyy-mm-ddTHH:MM:SS"))
|
||||
start = state(current_planet, time, v∞_out, mass)
|
||||
|
||||
corrected_phases = Vector{Phase}()
|
||||
for i in 1:length(guess.phases)
|
||||
phase = guess.phases[i]
|
||||
current_planet = phase.planet
|
||||
time += phase.tof
|
||||
goal = spkssb(phase.planet.id, time, "ECLIPJ2000") + [zeros(3); phase.v∞_in]
|
||||
goal = state(current_planet, time, phase.v∞_in)
|
||||
result = solve_phase( start, goal, guess.sc, phase.tof, phase.thrust_profile)
|
||||
result.converged || return Bad_Mission(result.info) # Drop if it's not working
|
||||
corrected_phase = Phase(phase.planet, phase.v∞_in, phase.δ, phase.tof, result.sol)
|
||||
corrected_phase = Phase(phase.planet, phase.v∞_in, phase.v∞_out, phase.tof, result.sol)
|
||||
push!(corrected_phases, corrected_phase)
|
||||
mass_used = mass_consumption(guess.sc, corrected_phase)
|
||||
mass -= mass_used
|
||||
if i != length(guess.phases)
|
||||
v∞_out = calc_turn(current_planet, phase.planet, guess.phases[i+1].planet, phase.v∞_in, phase.δ)
|
||||
current_planet = phase.planet
|
||||
planet_state = [spkssb(current_planet.id, time, "ECLIPJ2000"); 0.0]
|
||||
start = planet_state + [ zeros(3); v∞_out; start_mass - mass_used ]
|
||||
v∞_out = phase.v∞_out
|
||||
start = state(current_planet, time, v∞_out, mass)
|
||||
end
|
||||
end
|
||||
|
||||
@@ -183,8 +186,13 @@ function cost(mission::Mission, max_C3::Float64, max_v∞::Float64)
|
||||
return 3mass_percent + C3_percent + v∞_percent
|
||||
end
|
||||
|
||||
cost(_::Bad_Mission) = Inf
|
||||
|
||||
|
||||
"""
|
||||
This is the main monotonic basin hopping function. There's a lot going on here, but the general idea
|
||||
is that hopefully you can provide mission parameters and a list of flybys and get the optimal
|
||||
mission that uses those flybys.
|
||||
"""
|
||||
function mbh( flybys::Vector{Body},
|
||||
sc::Sc,
|
||||
start_mass::Float64,
|
||||
@@ -193,49 +201,64 @@ function mbh( flybys::Vector{Body},
|
||||
max_v∞::Float64,
|
||||
latest_arrival::DateTime,
|
||||
primary::Body=Sun;
|
||||
search_patience::Int=1_000,
|
||||
drill_patience::Int=50)
|
||||
# Let's pseudo-code this bitch
|
||||
#
|
||||
# First, we need a function (mission_guess below) that randomly generates the:
|
||||
# - Launch date
|
||||
# - Launch v∞_out
|
||||
# - for each phase:
|
||||
# - tof
|
||||
# - v∞_in
|
||||
# - turning angle
|
||||
#
|
||||
# Also need a function (inner_loop_solve below) that takes the generated decision vector guess and
|
||||
# attempts to correct it with the NLP solver. It will either converge or not.
|
||||
#
|
||||
# Also need a costing function (may be provided potentially)
|
||||
#
|
||||
# Also need a perturb function
|
||||
#
|
||||
guess = mission_guess(flybys, sc, start_mass, launch_window, max_C3, max_v∞, latest_arrival, primary)
|
||||
inner_loop_solve(guess)
|
||||
# search_count = 0
|
||||
# x_current = "Bad"
|
||||
# while search_count < search_patience
|
||||
# search_count += 1
|
||||
# drill_count = 0
|
||||
# x_star = inner_loop_solve(mission_guess())
|
||||
# if x_star.converged
|
||||
# if cost(x_star) < cost(x_current)
|
||||
# x_current = x_star
|
||||
# while drill_count < drill_patience
|
||||
# x_star = inner_loop_solve(perturb(x_current))
|
||||
# if x_star.converged and cost(x_star) < cost(x_current)
|
||||
# x_current = x_star
|
||||
# drill_count = 0
|
||||
# else
|
||||
# drill_count += 1
|
||||
# end
|
||||
# end
|
||||
# push!(archive, x_current)
|
||||
# end
|
||||
# end
|
||||
#
|
||||
#
|
||||
search_patience::Int=10_000,
|
||||
drill_patience::Int=50,
|
||||
verbose::Bool=false)
|
||||
|
||||
# A convenience function
|
||||
random_guess() = mission_guess(flybys,sc,start_mass,launch_window,max_C3,max_v∞,latest_arrival,primary)
|
||||
cost(m::Mission) = cost(m, max_C3, max_v∞)
|
||||
status(s,d,l) = print("\r\t", "search: ", s, " drill: ", d, " archive length: ", l, " ")
|
||||
|
||||
# Initialize stuff
|
||||
search_count = 0
|
||||
x_current = Bad_Mission("Starting point")
|
||||
archive = Vector{Mission}()
|
||||
|
||||
# The main loop
|
||||
if verbose println("Starting Monotonic Basin Hopper") end
|
||||
while search_count < search_patience
|
||||
|
||||
# Intialize an x_star, if it doesn't converge, hop on to the next basin
|
||||
search_count += 1
|
||||
drill_count = 0
|
||||
if verbose status(search_count, drill_count, length(archive)) end
|
||||
x_star = inner_loop_solve(random_guess())
|
||||
x_star.converged || continue
|
||||
x_basin = x_star
|
||||
|
||||
|
||||
# If it does, though, we check to see if it's better than the current
|
||||
if cost(x_star) < cost(x_current) x_current = x_star end
|
||||
|
||||
# Either way, we need to drill into this particular basin, since it's valid
|
||||
while drill_count < drill_patience
|
||||
|
||||
if verbose status(search_count, drill_count, length(archive)) end
|
||||
|
||||
#Perturb to generate a slightly different x_star
|
||||
x_star = inner_loop_solve(perturb(x_basin))
|
||||
|
||||
# If better than the best, then keep it as current
|
||||
if x_star.converged && cost(x_star) < cost(x_current)
|
||||
x_current = x_star
|
||||
x_basin = x_star
|
||||
drill_count = 0
|
||||
# If better than the best in this particular basin, keep it as basin
|
||||
elseif x_star.converged && cost(x_star) < cost(x_basin)
|
||||
x_basin = x_star
|
||||
drill_count = 0
|
||||
# Otherwise, keep drilling
|
||||
else
|
||||
drill_count += 1
|
||||
end
|
||||
end
|
||||
|
||||
x_current in archive || push!(archive, x_current)
|
||||
|
||||
end
|
||||
|
||||
return x_current, archive
|
||||
|
||||
end
|
||||
|
||||
|
||||
@@ -39,15 +39,17 @@ function solve_phase( start::Vector{Float64},
|
||||
lower_x = -1 * ones(3n)
|
||||
upper_x = ones(3n)
|
||||
num_constraints = 6
|
||||
filename = "ipopt_"*string(rand(UInt))
|
||||
ipopt_options = Dict("constr_viol_tol" => tol,
|
||||
"acceptable_constr_viol_tol" => 1e-4,
|
||||
"max_iter" => 10_000,
|
||||
"max_cpu_time" => 30.,
|
||||
"print_level" => 0)
|
||||
# if verbose ipopt_options["print_level"] = 5 end
|
||||
"print_level" => 0,
|
||||
"output_file" => filename)
|
||||
options = Options(solver=IPOPT(ipopt_options),
|
||||
derivatives=ForwardAD())
|
||||
x, _, info = minimize(f!, vec(x0), num_constraints, lower_x, upper_x, final[1:6], final[1:6], options)
|
||||
rm(filename)
|
||||
if info in [:Solve_Succeeded, :Solved_To_Acceptable_Level]
|
||||
return Result(true, info, reshape(x,(n,3)))
|
||||
else
|
||||
|
||||
@@ -1,17 +1,30 @@
|
||||
export Phase, Mission_Guess, Mission, Bad_Mission
|
||||
export test_phase1, test_phase2
|
||||
export test_mission_guess, test_mission_guess_simple
|
||||
export test_mission, test_mission_simple
|
||||
export test_mg, test_mission
|
||||
|
||||
struct Phase
|
||||
planet::Body
|
||||
v∞_in::Vector{Float64}
|
||||
δ::Float64
|
||||
v∞_out::Vector{Float64}
|
||||
tof::Float64
|
||||
thrust_profile::Matrix{Float64}
|
||||
end
|
||||
const test_phase1 = Phase(Venus, [10.4321, -6.3015, -0.01978], 0.2, 1.30464e7, zeros(20,3))
|
||||
const test_phase2 = Phase(Jupiter, [0.3, 7.1, 0.2], 2π, 3.9year, zeros(20,3))
|
||||
|
||||
const test_phase1 = Phase(Venus, [9., 10., 0.], [10., 9, 0.], 1.30464e7, zeros(20,3))
|
||||
const test_phase2 = Phase(Jupiter, [0.3, 7.1, 0.2], [0.3, 7.1, 0.2], 3.9year, zeros(20,3))
|
||||
const test_phases = [test_phase1, test_phase2]
|
||||
|
||||
"""
|
||||
A convenience function for calculating mass usage given a certain thrust profile
|
||||
"""
|
||||
function mass_consumption(sc::Sc, phase::Phase)
|
||||
weighted_thrusting_time = 0.0
|
||||
n = size(phase.thrust_profile)[1]
|
||||
for i in 1:size(phase.thrust_profile,1)
|
||||
weighted_thrusting_time += norm(phase.thrust_profile[i,:]) * phase.tof/n
|
||||
end
|
||||
return weighted_thrusting_time*sc.mass_flow_rate
|
||||
end
|
||||
|
||||
struct Mission_Guess
|
||||
sc::Sc
|
||||
@@ -21,17 +34,28 @@ struct Mission_Guess
|
||||
phases::Vector{Phase}
|
||||
converged::Bool
|
||||
end
|
||||
Mission_Guess(args...) = Mission_Guess(args..., false)
|
||||
const test_mission_guess = Mission_Guess( bepi,
|
||||
12_000.,
|
||||
DateTime(1992, 11, 19),
|
||||
[-3.4, 1.2, 0.1],
|
||||
[test_phase1, test_phase2] )
|
||||
const test_mission_guess_simple = Mission_Guess(bepi,
|
||||
12_000.,
|
||||
DateTime(1992, 11, 19),
|
||||
[-3.4, 1.2, 0.1],
|
||||
[test_phase1])
|
||||
|
||||
"""
|
||||
Constructor for a mission guess. Generally mission guesses are not converged
|
||||
"""
|
||||
function Mission_Guess(sc::Sc, mass::Float64, date::DateTime, v∞::Vector{Float64}, phases::Vector{Phase})
|
||||
# First do some checks to make sure that it's valid
|
||||
mass_used = 0
|
||||
for phase in phases
|
||||
mass_used += mass_consumption(sc, phase)
|
||||
mass - mass_used > sc.dry_mass || throw(Mass_Error(mass - mass_used))
|
||||
v∞_in, v∞_out = phase.v∞_in, phase.v∞_out
|
||||
if phase != phases[end]
|
||||
norm(v∞_in) ≈ norm(v∞_out) || throw(V∞_Error(v∞_in, v∞_out))
|
||||
δ = acos( ( v∞_in ⋅ v∞_out ) / ( norm(v∞_in) * norm(v∞_out) ) )
|
||||
periapsis = (phase.planet.μ/(v∞_in ⋅ v∞_in)) * ( 1/sin(δ/2) - 1 )
|
||||
periapsis > 1.1phase.planet.r || throw(HitPlanet_Error())
|
||||
end
|
||||
end
|
||||
Mission_Guess(sc, mass, date, v∞, phases, false)
|
||||
end
|
||||
|
||||
const test_mg = Mission_Guess(bepi, 12_000., DateTime(1992,11,19), [-3.4,1.2,0.1], test_phases)
|
||||
|
||||
struct Mission
|
||||
sc::Sc
|
||||
@@ -41,20 +65,33 @@ struct Mission
|
||||
phases::Vector{Phase}
|
||||
converged::Bool
|
||||
end
|
||||
Mission(args...) = Mission(args..., true)
|
||||
const test_mission = Mission(bepi,
|
||||
12_000.,
|
||||
DateTime(1992, 11, 19),
|
||||
[-3.4, 1.2, 0.1],
|
||||
[test_phase1, test_phase2])
|
||||
const test_mission_simple = Mission(bepi,
|
||||
12_000.,
|
||||
DateTime(1992, 11, 19),
|
||||
[4.2984, -4.3272668, 1.43752],
|
||||
[test_phase1])
|
||||
|
||||
"""
|
||||
Constructor for a mission. Generally mission guesses are converged
|
||||
"""
|
||||
function Mission(sc::Sc, mass::Float64, date::DateTime, v∞::Vector{Float64}, phases::Vector{Phase})
|
||||
# First do some checks to make sure that it's valid
|
||||
mass_used = 0
|
||||
for phase in phases
|
||||
mass_used += mass_consumption(sc, phase)
|
||||
mass - mass_used > sc.dry_mass || throw(Mass_Error(mass - mass_used))
|
||||
v∞_in, v∞_out = phase.v∞_in, phase.v∞_out
|
||||
if phase != phases[end]
|
||||
norm(v∞_in) ≈ norm(v∞_out) || throw(V∞_Error(v∞_in, v∞_out))
|
||||
δ = acos( ( v∞_in ⋅ v∞_out ) / ( norm(v∞_in) * norm(v∞_out) ) )
|
||||
periapsis = (phase.planet.μ/(v∞_in ⋅ v∞_in)) * ( 1/sin(δ/2) - 1 )
|
||||
periapsis > 1.1phase.planet.r || throw(HitPlanet_Error())
|
||||
end
|
||||
end
|
||||
Mission(sc, mass, date, v∞, phases, true)
|
||||
end
|
||||
|
||||
const test_mission = Mission(bepi, 12_000., DateTime(1992,11,19), [-3.4,1.2,0.1], test_phases)
|
||||
|
||||
struct Bad_Mission
|
||||
message::Symbol
|
||||
message::String
|
||||
converged::Bool
|
||||
end
|
||||
Bad_Mission(s) = Bad_Mission(s,false)
|
||||
Bad_Mission(s::String) = Bad_Mission(s,false)
|
||||
Bad_Mission(s::Symbol) = Bad_Mission(String(s),false)
|
||||
|
||||
|
||||
@@ -5,42 +5,54 @@
|
||||
println("Testing Monotonic Basin Hopper")
|
||||
|
||||
# First we test the random mission guess generator
|
||||
println("Testing guess generator function")
|
||||
flybys = [Earth, Venus, Jupiter]
|
||||
launch_window = ( DateTime(2021,12,25), DateTime(2025,12,25) )
|
||||
max_C3 = 10.
|
||||
max_v∞ = 8.
|
||||
latest_arrival = DateTime(2035,12,25)
|
||||
latest_arrival = DateTime(2030,12,25)
|
||||
random_guess = Thesis.mission_guess(flybys, bepi, 12_000., launch_window, max_C3, max_v∞, latest_arrival)
|
||||
@test typeof(random_guess) == Mission_Guess
|
||||
|
||||
# Then the perturb function
|
||||
println("Testing perturb function")
|
||||
mission_guess = Thesis.perturb(test_mission)
|
||||
@test mission_guess.launch_date != test_mission.launch_date
|
||||
@test mission_guess.launch_v∞ != test_mission.launch_v∞
|
||||
for i in 1:2
|
||||
@test mission_guess.phases[i].v∞_in != test_mission.phases[i].v∞_in
|
||||
@test mission_guess.phases[i].δ != test_mission.phases[i].δ
|
||||
@test mission_guess.phases[i].v∞_out != test_mission.phases[i].v∞_out
|
||||
@test mission_guess.phases[i].tof != test_mission.phases[i].tof
|
||||
end
|
||||
@test !mission_guess.converged
|
||||
|
||||
# # Then the inner loop builder function
|
||||
mission = Thesis.inner_loop_solve(test_mission_guess)
|
||||
println("Testing inner loop solver function")
|
||||
mission = Thesis.inner_loop_solve(test_mg)
|
||||
@test !mission.converged
|
||||
|
||||
# For the valid case we need to use a lambert's solver
|
||||
# TODO: This is probably not acceptable for how close I have to be
|
||||
leave = DateTime(1992,11,19)
|
||||
arrive = DateTime(1993,4,1)
|
||||
time_leave = utc2et(Dates.format(leave,"yyyy-mm-ddTHH:MM:SS"))
|
||||
time_arrive = utc2et(Dates.format(arrive,"yyyy-mm-ddTHH:MM:SS"))
|
||||
earth_state = [spkssb(Earth.id, time_leave, "ECLIPJ2000"); 0.0]
|
||||
venus_state = [spkssb(Venus.id, time_arrive, "ECLIPJ2000"); 0.0]
|
||||
leave, arrive = DateTime(1992,11,19), DateTime(1993,4,1)
|
||||
earth_state = state(Earth, leave)
|
||||
venus_state = state(Venus, arrive)
|
||||
v∞_out, v∞_in, tof = Thesis.lamberts(Earth, Venus, leave, arrive)
|
||||
phase = Phase(Venus, 1.01v∞_in, 0.2, tof, 0.01*ones(20,3))
|
||||
phase = Phase(Venus, 1.01v∞_in, -1.01v∞_in, tof, 0.01*ones(20,3))
|
||||
mission_guess = Mission_Guess(bepi, 12_000., leave, v∞_out, [phase])
|
||||
mission = Thesis.inner_loop_solve(mission_guess)
|
||||
@test mission.converged
|
||||
if !mission.converged println(mission.message) end
|
||||
|
||||
# Now we're ready to test the whole thing!
|
||||
println("Testing whole thing")
|
||||
flybys = [ Earth, Venus ]
|
||||
start_mass = 12_000.
|
||||
launch_window = DateTime(1997, 10, 1), DateTime(1997, 10, 31)
|
||||
max_C3 = 15.
|
||||
max_v∞ = 20.
|
||||
latest_arrival = DateTime(2001, 1, 1)
|
||||
best, archive = mbh(flybys, bepi, start_mass, launch_window, max_C3, max_v∞, latest_arrival,
|
||||
verbose=true)
|
||||
@test typeof(best) == Mission
|
||||
|
||||
|
||||
end
|
||||
|
||||
Reference in New Issue
Block a user