Merge branch 'nlsolve' into 'main'

Got all the way to MBH with NLsolve

See merge request school/thesis!1
This commit is contained in:
Connor Johnstone
2021-09-02 23:41:49 +00:00
11 changed files with 356 additions and 119 deletions

View File

@@ -5,9 +5,9 @@ uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
[[ArrayInterface]]
deps = ["IfElse", "LinearAlgebra", "Requires", "SparseArrays", "Static"]
git-tree-sha1 = "baf4ef9082070477046bd98306952292bfcb0af9"
git-tree-sha1 = "85d03b60274807181bae7549bb22b2204b6e5a0e"
uuid = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9"
version = "3.1.25"
version = "3.1.30"
[[Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
@@ -416,9 +416,9 @@ version = "1.6.1"
[[Static]]
deps = ["IfElse"]
git-tree-sha1 = "62701892d172a2fa41a1f829f66d2b0db94a9a63"
git-tree-sha1 = "854b024a4a81b05c0792a4b45293b85db228bd27"
uuid = "aedffcd0-7271-4cad-89d0-dc628f76c6d3"
version = "0.3.0"
version = "0.3.1"
[[StaticArrays]]
deps = ["LinearAlgebra", "Random", "Statistics"]

View File

@@ -3,8 +3,8 @@ module Thesis
using LinearAlgebra, ForwardDiff, PlotlyJS
include("./constants.jl")
include("./conversions.jl")
include("./spacecraft.jl")
include("./conversions.jl")
include("./plotting.jl")
include("./laguerre-conway.jl")
include("./propagator.jl")

View File

@@ -1,4 +1,4 @@
export oe_to_rθh, rθh_to_xyz, oe_to_xyz, xyz_to_oe
export oe_to_rθh, rθh_to_xyz, oe_to_xyz, xyz_to_oe, conv_T
function oe_to_rθh(oe::Vector,μ::Real) :: Vector
@@ -68,3 +68,51 @@ function xyz_to_oe(cart_vec::Vector,μ::Real)
return [a,e,i,Ω,ω,ν]
end
"""
Converts a series of thrust vectors from R,Θ,H frame to cartesian
"""
function conv_T(Tm::Vector{Float64},
Ta::Vector{Float64},
Tb::Vector{Float64},
init_state::Vector{Float64},
m::Float64,
craft::Sc,
time::Float64,
μ::Float64)
Txs = Float64[]
Tys = Float64[]
Tzs = Float64[]
n::Int = length(Tm)
for i in 1:n
mag, α, β = Tm[i], Ta[i], Tb[i]
if mag > 1 || mag < 0
@error "ΔV input is too high: $mag"
elseif α > π || α < -π
@error "α angle is incorrect: $α"
elseif β > π/2 || β < -π/2
@error "β angle is incorrect: "
end
end
state = init_state
for i in 1:n
mag, α, β = Tm[i], Ta[i], Tb[i]
thrust_rθh = mag * [cos(β)*sin(α), cos(β)*cos(α), sin(β)]
_,_,i,Ω,ω,ν = xyz_to_oe(state, μ)
θ = ω+ν
,,ci,si,, = cos(Ω),sin(Ω),cos(i),sin(i),cos(θ),sin(θ)
DCM = [*-*ci* -*-*ci* *si;
*+*ci* -*+*ci* -*si;
si* si* ci ]
Tx, Ty, Tz = DCM*thrust_rθh
state = prop_one([Tx, Ty, Tz], state, craft, μ, time/n)[1]
push!(Txs, Tx)
push!(Tys, Ty)
push!(Tzs, Tz)
end
return Txs, Tys, Tzs
end

View File

@@ -1,10 +1,14 @@
using NLsolve
export nlp_solve
export nlp_solve, mass_est
function treat_inputs(x::AbstractVector)
n::Int = length(x)/3
reshape(x,(3,n))'
function mass_est(T)
ans = 0
n = Int(length(T)/3)
for i in 1:n
ans += norm(T[i,:])
end
return ans/n
end
function nlp_solve(start::Vector{Float64},
@@ -13,15 +17,14 @@ function nlp_solve(start::Vector{Float64},
μ::Float64,
t0::Float64,
tf::Float64,
x0::AbstractVector;
x0::Matrix{Float64};
tol=1e-6)
n::Int = length(x0)/3
function f!(F,x)
F[1:6] .= prop(treat_inputs(x), start, craft, μ, tf-t0)[1][end,:] - final
F[7:3n] .= 0.
F .= 0.0
F[1:6, 1] .= prop_nlsolve(tanh.(x), start, craft, μ, tf-t0) .- final
end
return nlsolve(f!, x0, ftol=tol, autodiff=:forward, iterations=1_000)
return nlsolve(f!, atanh.(x0), ftol=tol, autodiff=:forward, iterations=1_000)
end

View File

@@ -1,12 +1,12 @@
function laguerre_conway(state::Vector{T}, μ::Float64, time::Float64) where T <: Real
function laguerre_conway(state::Vector{T}, μ::Float64, time::Float64) where T
n = 5 # Choose LaGuerre-Conway "n"
i = 0
r0 = state[1:3] # Are we in elliptical or hyperbolic orbit?
r0_mag = norm(r0)
r0_mag = (state[1]^2 + state[2]^2 + state[3]^2)
v0 = state[4:6]
v0_mag = norm(v0)
v0_mag = (state[4]^2 + state[5]^2 + state[6]^2)
σ0 = (r0 v0)/(μ)
a = 1 / ( 2/r0_mag - v0_mag^2/μ )
coeff = 1 - r0_mag/a

View File

@@ -1,19 +1,20 @@
function perturb(x::AbstractVector, n::Int)
perturb_vector = 0.02 * rand(Float64, (3n)) .- 0.01
return x + perturb_vector
function pareto(α::Float64, n::Int)
s = rand((-1,1), (n,3))
r = rand(Float64, (n,3))
ϵ = 1e-10
return (s./ϵ) * (α - 1.0) ./ (ϵ ./ (ϵ .+ r)).^(-α)
end
function mass_better(x_star::AbstractVector,
x_current::AbstractVector,
start::AbstractVector,
final::AbstractVector,
craft::Sc,
μ::AbstractFloat,
t0::AbstractFloat,
tf::AbstractFloat)
mass_star = prop(treat_inputs(x_star), start, craft, μ, tf-t0)[2]
mass_current = prop(treat_inputs(x_current), start, craft, μ, tf-t0)[2]
return mass_star > mass_current
function perturb(x::AbstractMatrix, n::Int)
ans = x + pareto(1.01, n)
map!(elem -> elem > 1.0 ? 1.0 : elem, ans, ans)
map!(elem -> elem < -1.0 ? -1.0 : elem, ans, ans)
return ans
end
function new_x(n::Int)
2.0 * rand(Float64, (n,3)) .- 1.
end
function mbh(start::AbstractVector,
@@ -22,35 +23,51 @@ function mbh(start::AbstractVector,
μ::AbstractFloat,
t0::AbstractFloat,
tf::AbstractFloat,
n::Int,
num_iters::Int=10,
tol=1e-6)
i::Int = 0
n::Int;
num_iters=50,
patience_level::Int=400,
tol=1e-6,
verbose=false)
archive = []
x_star = nlp_solve(start, final, craft, μ, t0, tf, rand(Float64,(3n)), tol=tol)
while converged(x_star) == false
x_star = nlp_solve(start, final, craft, μ, t0, tf, rand(Float64,(3n)), tol=tol)
end
x_current = x_star
push!(archive, x_current)
while i < num_iters
x_star = nlp_solve(start, final, craft, μ, t0, tf, perturb(x_current.zero,n), tol=tol)
if converged(x_star) && mass_better(x_star.zero, x_current.zero, start, final, craft, μ, t0, tf)
x_current = x_star
push!(archive, x_star)
else
while converged(x_star) == false
x_star = nlp_solve(start, final, craft, μ, t0, tf, rand(Float64,(3n)), tol=tol)
end
if mass_better(x_star.zero, x_current.zero, start, final, craft, μ, t0, tf)
x_current = x_star
push!(archive, x_star)
end
end
i = 0
if verbose println("Current Iteration") end
while true
i += 1
if verbose print("\r",i) end
impatience = 0
x_star = nlp_solve(start, final, craft, μ, t0, tf, new_x(n), tol=tol)
while converged(x_star) == false
x_star = nlp_solve(start, final, craft, μ, t0, tf, new_x(n), tol=tol)
end
if converged(x_star)
x_current = x_star
while impatience < patience_level
x_star = nlp_solve(start, final, craft, μ, t0, tf, perturb(tanh.(x_current.zero),n), tol=tol)
if converged(x_star) && mass_est(tanh.(x_star.zero)) < mass_est(tanh.(x_current.zero))
x_current = x_star
impatience = 0
else
impatience += 1
end
end
push!(archive, x_current)
end
if i >= num_iters
break
end
end
return x_current, archive
current_best_mass = 1e8
best = archive[1]
for candidate in archive
if mass_est(tanh.(candidate.zero)) < current_best_mass
current_best_mass = mass_est(tanh.(candidate.zero))
best = candidate
end
end
return best, archive
end

View File

@@ -16,7 +16,7 @@ function get_true_max(mat::Vector{Array{Float64,2}})
return maximum(abs.(flatten(mat)))
end
function plot_orbits(paths::Vector{Array{Float64,2}};
function plot_orbits(paths::Vector{Vector{Vector{Float64}}};
primary::String="Earth",
plot_theme::Symbol=:juno,
labels::Vector{String}=Vector{String}(),
@@ -34,13 +34,14 @@ function plot_orbits(paths::Vector{Array{Float64,2}};
t1 = []
for i = 1:length(paths)
path = [ x for x in paths[i] ]
path = paths[i]
label = labels != [] ? labels[i] : "orbit"
color = colors != [] ? colors[i] : random_color()
push!(t1, scatter3d(;x=(path[:,1]),y=(path[:,2]),z=(path[:,3]),
push!(t1, scatter3d(;x=(path[1]),y=(path[2]),z=(path[3]),
mode="lines", name=label, line_color=color, line_width=3))
end
limit = max(maximum(abs.(flatten(paths))),maximum(abs.(flatten(ps)))) * 1.1
limit = max(maximum(abs.(flatten(flatten(paths)))),
maximum(abs.(flatten(ps)))) * 1.1
t2 = surface(;x=(x_p),
y=(y_p),

View File

@@ -16,38 +16,19 @@ end
This function propagates the spacecraft forward in time 1 Sim-Flanagan step (of variable length of time),
applying a thrust in the center.
"""
function prop_one(ΔV::Vector{T},
state::Vector{S},
function prop_one(thrust_unit::Vector{<:Real},
state::Vector{<:Real},
duty_cycle::Float64,
num_thrusters::Int,
max_thrust::Float64,
mass::S,
mass::T,
mass_flow_rate::Float64,
μ::Float64,
time::Float64) where {T <: Real, S <: Real}
time::Float64) where T<:Real
mag, α, β = ΔV
# if mag > 1 || mag < 0
# throw(ErrorException("ΔV input is too high: $mag"))
# elseif α > π || α < -π
# throw(ErrorException("α angle is incorrect: $α"))
# elseif β > π/2 || β < -π/2
# throw(ErrorException("β angle is incorrect: $β"))
# end
thrust_rθh = mag * [cos(β)*sin(α), cos(β)*cos(α), sin(β)]
a,e,i,Ω,ω,ν = xyz_to_oe(state, μ)
θ = ω+ν
,,ci,si,, = cos(Ω),sin(Ω),cos(i),sin(i),cos(θ),sin(θ)
DCM = [*-*ci* -*-*ci* *si;
*+*ci* -*+*ci* -*si;
si* si* ci]
ΔV = DCM*thrust_rθh
thrust = max_ΔV(duty_cycle, num_thrusters, max_thrust, time, 0., mass) * ΔV
halfway = laguerre_conway(state, μ, time/2) + [0., 0., 0., thrust[1], thrust[2], thrust[3]]
return laguerre_conway(halfway, μ, time/2), mass - mass_flow_rate*norm(ΔV)*time
ΔV = max_ΔV(duty_cycle, num_thrusters, max_thrust, time, 0., mass) * thrust_unit
halfway = laguerre_conway(state, μ, time/2) + [0., 0., 0., ΔV...]
return laguerre_conway(halfway, μ, time/2), mass - mass_flow_rate*norm(thrust_unit)*time
end
@@ -64,6 +45,7 @@ function prop_one(ΔV_unit::Vector{T},
return state, Sc(mass, craft.mass_flow_rate, craft.max_thrust, craft.num_thrusters, craft.duty_cycle)
end
"""
This propagates over a given time period, with a certain number of intermediate steps
"""
@@ -92,24 +74,159 @@ end
"""
The same function, using Scs
"""
function prop(ΔVs::AbstractArray{T},
state::Vector{Float64},
function prop(ΔVs::Matrix{T},
state::Vector{S},
craft::Sc,
μ::Float64,
time::Float64) where T <: Real
time::Float64) where {T <: Real, S <: Real}
if size(ΔVs)[2] != 3 throw(ErrorException("ΔV input is wrong size")) end
n = size(ΔVs)[1]
states = state'
masses = craft.mass
x_states = [state[1]]
y_states = [state[2]]
z_states = [state[3]]
dx_states = [state[4]]
dy_states = [state[5]]
dz_states = [state[6]]
masses = [craft.mass]
for i in 1:n
state, craft = prop_one(ΔVs[i,:], state, craft, μ, time/n)
states = [states; state']
masses = [masses, craft.mass]
push!(x_states, state[1])
push!(y_states, state[2])
push!(z_states, state[3])
push!(dx_states, state[4])
push!(dy_states, state[5])
push!(dz_states, state[6])
push!(masses, craft.mass)
end
return states, masses
return [x_states, y_states, z_states, dx_states, dy_states, dz_states], masses, state
end
function prop_nlsolve(ΔVs::Matrix{T},
state::Vector{S},
craft::Sc,
μ::Float64,
time::Float64) where {T <: Real, S <: Real}
n = size(ΔVs)[1]
for i in 1:n
state, craft = prop_one(ΔVs[i,:], state, craft, μ, time/n)
end
return state
end
function prop_simple(ΔVs::AbstractMatrix,
state::AbstractVector,
craft::Sc,
μ::Float64,
time::Float64)
if size(ΔVs)[2] != 3 throw(ErrorException("ΔV input is wrong size")) end
n = size(ΔVs)[1]
for i in 1:n
state, craft = prop_one(ΔVs[i,:], state, craft, μ, time/n)
end
return state
end
function prop_one_simple(Tx, Ty, Tz, x, y, z, dx, dy, dz, t, μ)
# perform laguerre_conway once
r0_mag = (x^2 + y^2 + z^2)
v0_mag = (dx^2 + dy^2 + dz^2)
σ0 = ([x, y, z] [dx, dy, dz])/(μ)
a = 1 / ( 2/r0_mag - v0_mag^2/μ )
coeff = 1 - r0_mag/a
if a > 0 # Elliptical
ΔM = ΔE_new = (μ) / sqrt(a^3) * t/2
ΔE = 1000
while abs(ΔE - ΔE_new) > 1e-10
ΔE = ΔE_new
F = ΔE - ΔM + σ0 / (a) * (1-cos(ΔE)) - coeff * sin(ΔE)
dF = 1 + σ0 / (a) * sin(ΔE) - coeff * cos(ΔE)
d2F = σ0 / (a) * cos(ΔE) + coeff * sin(ΔE)
sign = dF >= 0 ? 1 : -1
ΔE_new = ΔE - 5*F / ( dF + sign * (abs((5-1)^2*dF^2 - 5*(5-1)*F*d2F )))
end
F = 1 - a/r0_mag * (1-cos(ΔE))
G = a * σ0/ (μ) * (1-cos(ΔE)) + r0_mag * (a) / (μ) * sin(ΔE)
r = a + (r0_mag - a) * cos(ΔE) + σ0 * (a) * sin(ΔE)
Ft = -(a)*(μ) / (r*r0_mag) * sin(ΔE)
Gt = 1 - a/r * (1-cos(ΔE))
else # Hyperbolic or Parabolic
ΔN = (μ) / sqrt(-a^3) * t/2
ΔH = 0
ΔH_new = t/2 < 0 ? -1 : 1
while abs(ΔH - ΔH_new) > 1e-10
ΔH = ΔH_new
F = -ΔN - ΔH + σ0 / (-a) * (cos(ΔH)-1) + coeff * sin(ΔH)
dF = -1 + σ0 / (-a) * sin(ΔH) + coeff * cos(ΔH)
d2F = σ0 / (-a) * cos(ΔH) + coeff * sin(ΔH)
sign = dF >= 0 ? 1 : -1
ΔH_new = ΔH - 5*F / ( dF + sign * (abs((5-1)^2*dF^2 - 5*(5-1)*F*d2F )))
end
F = 1 - a/r0_mag * (1-cos(ΔH))
G = a * σ0/ (μ) * (1-cos(ΔH)) + r0_mag * (-a) / (μ) * sin(ΔH)
r = a + (r0_mag - a) * cos(ΔH) + σ0 * (-a) * sin(ΔH)
Ft = -(-a)*(μ) / (r*r0_mag) * sin(ΔH)
Gt = 1 - a/r * (1-cos(ΔH))
end
# add the thrust vector
x,y,z,dx,dy,dz = [F*[x,y,z] + G*[dx,dy,dz]; Ft*[x,y,z] + Gt*[dx,dy,dz] + [Tx, Ty, Tz]]
#perform again
r0_mag = (x^2 + y^2 + z^2)
v0_mag = (dx^2 + dy^2 + dz^2)
σ0 = ([x, y, z] [dx, dy, dz])/(μ)
a = 1 / ( 2/r0_mag - v0_mag^2/μ )
coeff = 1 - r0_mag/a
if a > 0 # Elliptical
ΔM = ΔE_new = (μ) / sqrt(a^3) * t/2
ΔE = 1000
while abs(ΔE - ΔE_new) > 1e-10
ΔE = ΔE_new
F = ΔE - ΔM + σ0 / (a) * (1-cos(ΔE)) - coeff * sin(ΔE)
dF = 1 + σ0 / (a) * sin(ΔE) - coeff * cos(ΔE)
d2F = σ0 / (a) * cos(ΔE) + coeff * sin(ΔE)
sign = dF >= 0 ? 1 : -1
ΔE_new = ΔE - 5*F / ( dF + sign * (abs((5-1)^2*dF^2 - 5*(5-1)*F*d2F )))
end
F = 1 - a/r0_mag * (1-cos(ΔE))
G = a * σ0/ (μ) * (1-cos(ΔE)) + r0_mag * (a) / (μ) * sin(ΔE)
r = a + (r0_mag - a) * cos(ΔE) + σ0 * (a) * sin(ΔE)
Ft = -(a)*(μ) / (r*r0_mag) * sin(ΔE)
Gt = 1 - a/r * (1-cos(ΔE))
else # Hyperbolic or Parabolic
ΔN = (μ) / sqrt(-a^3) * t/2
ΔH = 0
ΔH_new = t/2 < 0 ? -1 : 1
while abs(ΔH - ΔH_new) > 1e-10
ΔH = ΔH_new
F = -ΔN - ΔH + σ0 / (-a) * (cos(ΔH)-1) + coeff * sin(ΔH)
dF = -1 + σ0 / (-a) * sin(ΔH) + coeff * cos(ΔH)
d2F = σ0 / (-a) * cos(ΔH) + coeff * sin(ΔH)
sign = dF >= 0 ? 1 : -1
ΔH_new = ΔH - 5*F / ( dF + sign * (abs((5-1)^2*dF^2 - 5*(5-1)*F*d2F )))
end
F = 1 - a/r0_mag * (1-cos(ΔH))
G = a * σ0/ (μ) * (1-cos(ΔH)) + r0_mag * (-a) / (μ) * sin(ΔH)
r = a + (r0_mag - a) * cos(ΔH) + σ0 * (-a) * sin(ΔH)
Ft = -(-a)*(μ) / (r*r0_mag) * sin(ΔH)
Gt = 1 - a/r * (1-cos(ΔH))
end
return [F*[x,y,z] + G*[dx,dy,dz]; Ft*[x,y,z] + Gt*[dx,dy,dz]]
end

View File

@@ -1,7 +1,6 @@
@testset "Find Closest" begin
using NLsolve
using Thesis: treat_inputs
using NLsolve, PlotlyJS
# Initial Setup
sc = Sc("test")
@@ -10,30 +9,41 @@
i = rand(0.01:0.01:π/6)
T = 2π*(a^3/μs["Earth"])
prop_time = 2T
n = 30
n = 20
# A simple orbit raising
start = oe_to_xyz([ a, e, i, 0., 0., 0. ], μs["Earth"])
ΔVs = repeat([0.6, 0., 0.]', outer=(n,1))
final = prop(ΔVs, start, sc, μs["Earth"], prop_time)[1][end,:]
# T_craft = hcat(repeat([0.6], n), repeat([0.], n), repeat([0.], n))
Tx, Ty, Tz = conv_T(repeat([0.6], n), repeat([0.], n), repeat([0.], n),
start,
sc.mass,
sc,
prop_time,
μs["Earth"])
final = prop(hcat(Tx, Ty, Tz), start, sc, μs["Earth"], prop_time)[3]
new_T = 2π*(xyz_to_oe(final, μs["Earth"])[1]^3/μs["Earth"])
# This should be close enough to 0.6
x0 = repeat([0.55, 0., 0.], n)
result = nlp_solve(start, final, sc, μs["Earth"], 0.0, prop_time, x0)
Tx, Ty, Tz = conv_T(repeat([0.59], n), repeat([0.01], n), repeat([0.], n),
start,
sc.mass,
sc,
prop_time,
μs["Earth"])
result = nlp_solve(start, final, sc, μs["Earth"], 0.0, prop_time, hcat(Tx, Ty, Tz))
# Test and plot
@test converged(result)
path1 = prop(zeros((100,3)), start, sc, μs["Earth"], T)[1]
path2, mass = prop(treat_inputs(result.zero), start, sc, μs["Earth"], prop_time)
path3 = prop(zeros((100,3)), path2[end,:], sc, μs["Earth"], new_T)[1]
path2, mass, calc_final = prop(tanh.(result.zero), start, sc, μs["Earth"], prop_time)
path3 = prop(zeros((100,3)), calc_final, sc, μs["Earth"], new_T)[1]
path4 = prop(zeros((100,3)), final, sc, μs["Earth"], new_T)[1]
savefig(plot_orbits([path1, path2, path3, path4],
labels=["initial", "transit", "after transit", "final"],
colors=["#FFFFFF","#FF4444","#44FF44","#4444FF"]),
"../plots/find_closest_test.html")
"../plots/find_closest_test.html")
if converged(result)
@test norm(path2[end,:] - final) < 1e-4
@test norm(calc_final - final) < 1e-4
end
end

View File

@@ -8,22 +8,63 @@
e = rand(0.01:0.01:0.5)
i = rand(0.01:0.01:π/6)
T = 2π*(a^3/μs["Earth"])
prop_time = 2T
n = 25
prop_time = 0.75T
n = 10
# A simple orbit raising
start = oe_to_xyz([ a, e, i, 0., 0., 0. ], μs["Earth"])
ΔVs = repeat([0.6, 0., 0.]', outer=(n,1))
final = prop(ΔVs, start, sc, μs["Earth"], prop_time)[1][end,:]
# T_craft = hcat(repeat([0.6], n), repeat([0.], n), repeat([0.], n))
Tx, Ty, Tz = conv_T(repeat([0.8], n), repeat([0.], n), repeat([0.], n),
start,
sc.mass,
sc,
prop_time,
μs["Earth"])
nominal_path, normal_mass, final = prop(hcat(Tx, Ty, Tz), start, sc, μs["Earth"], prop_time)
new_T = 2π*(xyz_to_oe(final, μs["Earth"])[1]^3/μs["Earth"])
# This should be close enough to 0.6
best, archive = mbh(start, final, sc, μs["Earth"], 0.0, prop_time, n)
# Find the best solution
best, archive = mbh(start,
final,
sc,
μs["Earth"],
0.0,
prop_time,
n,
num_iters=5,
patience_level=50,
verbose=true)
# Test and plot
@test converged(best)
for path in archive
@test converged(path)
transit, best_masses, calc_final = prop(tanh.(best.zero), start, sc, μs["Earth"], prop_time)
initial_path = prop(zeros((100,3)), start, sc, μs["Earth"], T)[1]
after_transit = prop(zeros((100,3)), calc_final, sc, μs["Earth"], new_T)[1]
final_path = prop(zeros((100,3)), final, sc, μs["Earth"], new_T)[1]
savefig(plot_orbits([initial_path, nominal_path, final_path],
labels=["initial", "nominal transit", "final"],
colors=["#FF4444","#44FF44","#4444FF"]),
"../plots/mbh_nominal.html")
savefig(plot_orbits([initial_path, transit, after_transit, final_path],
labels=["initial", "transit", "after transit", "final"],
colors=["#FFFFFF", "#FF4444","#44FF44","#4444FF"]),
"../plots/mbh_best.html")
i = 0
best_mass = best_masses[end]
nominal_mass = normal_mass[end]
masses = []
for candidate in archive
@test converged(candidate)
path2, cand_ms, calc_final = prop(tanh.(candidate.zero), start, sc, μs["Earth"], prop_time)
push!(masses, cand_ms[end])
@test norm(calc_final - final) < 1e-4
end
@test best_mass == maximum(masses)
# This won't always work since the test is reduced in fidelity,
# but hopefully will usually work:
@test (sc.mass - best_mass) < 1.1 * (sc.mass - nominal_mass)
@show best_mass
@show nominal_mass
end

View File

@@ -6,10 +6,10 @@ using Thesis
# Tests
@testset "All Tests" begin
include("spacecraft.jl")
include("laguerre-conway.jl")
include("propagator.jl")
include("plotting.jl")
# include("spacecraft.jl")
# include("laguerre-conway.jl")
# include("propagator.jl")
# include("plotting.jl")
include("find_closest.jl")
include("monotonic_basin_hopping.jl")
end