No progress made really...

This commit is contained in:
Connor
2021-08-25 10:10:22 -06:00
parent 966f954528
commit e25d6ff9f4
5 changed files with 95 additions and 35 deletions

View File

@@ -1,13 +1,8 @@
using NLsolve
using NLsolve, NLopt
function treat_inputs(x::AbstractVector, n::Int)
inputs = reshape(copy(x),(3,n))'
for i in 1:n
inputs[i,1] = 0.5*tanh(inputs[i,1]) + 0.5
inputs[i,2] = π*tanh(inputs[i,2])
inputs[i,3] = π*tanh(inputs[i,3])/2
end
return inputs
function treat_inputs(x::AbstractVector)
n::Int = length(x)/3
reshape(x,(3,n))'
end
function single_shoot(start::Vector{Float64},
@@ -21,13 +16,72 @@ function single_shoot(start::Vector{Float64},
tol=1e-2)
function f!(F,x)
F[1:6] .= prop(treat_inputs(x,n), start, craft, μ, tf-t0)[1][end,:] - final
F[1:6] .= prop(treat_inputs(x), start, craft, μ, tf-t0)[1][end,:] - final
F[7:3n] .= 0.
# if typeof(F[1]) == Float64 println(F[1:6]) end
# if typeof(F[1]) == Float64 println(treat_inputs(x,n)[1:8,1]) end
end
return nlsolve(f!, x0, ftol=tol, autodiff=:forward, iterations=10_000)
end
function single_shoot2(start::Vector,
final::Vector,
craft::Sc,
μ::AbstractFloat,
t0::AbstractFloat,
tf::AbstractFloat,
x0::Vector,
tol=1e-8)
n::Int = length(x0)/3
m0 = craft.mass
f(x::Vector) = m0 - prop(treat_inputs(x), start, craft, μ, tf-t0)[2][end]
f_constraint(x::Vector) = norm(prop(treat_inputs(x), start, craft, μ, tf-t0)[1][end,:] - final)
function nlfunc(x::Vector, grad::Vector)
try
if length(grad) != 0
ForwardDiff.gradient!(grad, f, x)
end
f(x)
catch e
println("Error was $e")
throw(e)
end
end
function nlconstraint(x::Vector, grad::Vector)
if length(grad) != 0
ForwardDiff.gradient!(grad, f_constraint, x)
end
f_constraint(x)
end
opt = Opt(:LD_MMA, 3n)
lower_bounds = Vector{Float64}()
upper_bounds = Vector{Float64}()
for i in 1:3n
if i%3 == 1
push!(lower_bounds, 0.)
push!(upper_bounds, 1.)
elseif i%3 == 2
push!(lower_bounds, -π)
push!(upper_bounds, π)
elseif i%3 == 0
push!(lower_bounds, -π/2)
push!(upper_bounds, π/2)
end
end
opt.lower_bounds = lower_bounds
opt.upper_bounds = upper_bounds
opt.xtol_rel = 1e-4
opt.min_objective = nlfunc
inequality_constraint!(opt, nlconstraint, 1e-8)
(minf, minx, ret) = optimize(opt, x0)
numevals = opt.numevals
return minf, minx, ret, numevals
end